Intermediate Value Theorem

Problem: Use the Intermediate Value Theorem to show that the following function has a zero in the given interval.  Approximate the zero to two decimal places.

f(x)=9x^3+9x^2-9x+6; [-2,-1]

Solution:

To determine if there is a zero in the interval use the Intermediate Value theorem.  To use the Intermediate Value Theorem, the function must be continuous on the interval [-2,-1].  The function f(x)=9x^3+9x^2-9x+6 is a polynomial function and polynomial functions are defined and continuous for all real numbers.

Evaluate the function at the endpoints and if there is a sign change.  If there is a sign change, the Intermediate Value Theorem states there must be a zero on the interval.  To evaluate the function at the endpoints, calculate f(-2)  and f(-1).

f(-2)=9(-2)^3+9(-2)^2-9(-2)+6
f(-2)=9(-8)+9(4)+18+6
f(-2)=-72+36+24
f(-2)=-72+60
f(-2)=-12

f(-1)=9(-1)^3+9(-1)^2-9(-1)+6
f(-1)=9(-1)+9(1)+9+6
f(-1)=-9+9+9+6
f(-1)=0+15
f(-1)=15

Since one endpoint gives a negative value and one endpoint gives a positive value, there must be a zero in the interval.

We can get a better approximation of the zero by trying to figure out the next decimal point. Write out all of the values to one decimal point between -2 and -1.

xf(x)f(x)
-2.09(-2)^3+9(-2)^2-9(-2)+6-12
-1.9
-1.8
-1.7
-1.6
-1.5
-1.4
-1.3
-1.2
-1.1
-1.09(-1)^3+9(-1)^2-9(-1)+615

Fill the table.  There are functions in your calculator that make this easier.

xf(x)f(x)
-2.09(-2)^3+9(-2)^2-9(-2)+6-12
-1.99(-1.9)^3+9(-1.9)^2-9(-1.9)+6-6.141
-1.89(-1.8)^3+9(-1.8)^2-9(-1.8)+6-1.128
-1.79(-1.7)^3+9(-1.7)^2-9(-1.7)+63.093
-1.69(-1.6)^3+9(-1.6)^2-9(-1.6)+66.576
-1.59(-1.5)^3+9(-1.5)^2-9(-1.5)+69.375
-1.49(-1.4)^3+9(-1.4)^2-9(-1.4)+611.544
-1.39(-1.3)^3+9(-1.3)^2-9(-1.3)+613.137
-1.29(-1.2)^3+9(-1.2)^2-9(-1.2)+614.208
-1.19(-1.1)^3+9(-1.1)^2-9(-1.1)+614.811
-1.09(-1)^3+9(-1)^2-9(-1)+615

Use the Intermediate Value Theorem again.  Look for a sign change.  Looking down the table, there is a sign change between -1.8 and -1.7.  With this information we now know the zero is between these two values.

Repeat this process again with two decimal places between -1.8 and -1.7.

xf(x)f(x)
-1.809(-1.8)^3+9(-1.8)^2-9(-1.8)+6-1.128
-1.799(-1.79)^3+9(-1.79)^2-9(-1.79)+6-.6712
-1.789(-1.78)^3+9(-1.78)^2-9(-1.78)+6-.2222
-1.779(-1.77)^3+9(-1.77)^2-9(-1.77)+6.219
-1.769(-1.76)^3+9(-1.76)^2-9(-1.76)+6.65242
-1.759(-1.75)^3+9(-1.75)^2-9(-1.75)+61.0781
-1.749(-1.74)^3+9(-1.74)^2-9(-1.74)+61.4962
-1.739(-1.73)^3+9(-1.73)^2-9(-1.73)+61.9066
-1.729(-1.72)^3+9(-1.72)^2-9(-1.72)+62.3096
-1.719(-1.71)^3+9(-1.71)^2-9(-1.71)+62.705
-1.709(-1.7)^3+9(-1.7)^2-9(-1.7)+63.093

Use the Intermediate Value Theorem.  Look for a sign change.  Looking down the table, there is a sign change between -1.78 and -1.77.  With this information we now know the zero is between these two values and the zero to two decimal places is -1.77 since all the numbers between -1.78 and -1.77 start with -1.77.