Application of Systems of Linear Equations

Problem:

Benjamin & Associates, a real estate developer, recently built condominiums in McCall, Idaho.  The condos were either two-bedroom units or three-bedroom units.  If the total number of bedrooms in the entire complex is 498, how many two-bedroom units are there?  How many three-bedroom units are there?

Solution:

Assign variables to the values we are looking for in the equation.

Let x be the number of two-bedroom units.
Let y be the number of three-bedroom units.

Create equations using the information given in the problem.

Since there are 199 condos built in the complex, the number of two-bedroom units plus the three bedroom units should equal the total units of 199.

x+y=199

Since there are a total of 498 bedrooms in the complex, 2x represents number of bedrooms coming from two-bedroom units, and 3x represents number of bedrooms coming from three-bedroom units,  the number of bedrooms from two-bedroom units plus the number of bedrooms from three-bedroom units should equal to the total number of bedrooms of 498.

2x+3y=498

 

Solve the system of equations.

x+y=199
2x+3y=498

 

Solve one equation for one of the variables.  Choose to solve for x in the first equation since it doesn’t have a coefficient and fractions can be avoided that way.
x+y=199
x+y-y=199-y
x=199-y
Substitute the expression into the other equation.
2x+3y=498
2(199-y)+3y=498
Solve for the other variable. 

  • Use the distributive property to remove parenthesis.
  • Combine like terms
  • Isolate the variable on one side of the equation
2(199-y)+3y=498
398-2y+3y=498
398+y=498
398+y-398=498-398
y=100

y represents the number of three-bedroom units.  There are 100 three-bedroom units.

x represents the number of two-bedroom units.  There are 199-100=99 two-bedroom units.

Polynomial Equation (Solve by factoring with the grouping method)

Example:  Solve the polynomial equation

y^3+y^2=4y+4

Solution:  Solve the polynomial equation by factoring.

The original equation.
y^3+y^2=4y+4
Write the equation so that all the terms are on the same side.

  • Subtract 4y
  • Subtract 4
y^3+y^2=4y+4
y^3+y^2-4y=4y-4y+4
y^3+y^2-4y=4
y^3+y^2-4y-4=4-4
y^3+y^2-4y-4=0
Group two terms pairs of terms and factor the greatest common factor from each group.

  • The greatest common factor for the first group is y^2
  • The greatest common factor for the second group is -4
y^3+y^2-4y-4=0
(y^3+y^2)+(-4y-4)=0
(y^3+y^2)+(-4y-4)=0
y^2(y+1)+-4(y+1)=0
Factor the common binomial from each term.

  • The common binomial is (y+1)
  • The other factor is formed using the coefficients of the parenthesis
y^2(y+1)+-4(y+1)=0
(y+1)(y^2-4)=0
Continue to factor completely by factoring the difference of squares in the second parenthesis
(y+1)(y^2-4)=0
(y+1)(y+2)(y-2)=0
Apply the zero product property by setting each factor equal to zero.
y+1=0 or y+2=0 or y-2=0
Solve each remaining equation.
y+1=0 or y+2=0 or y-2=0
y+1-1=0-1 or y+2-2=0-2 or y-2+2=0+2
y=-1 or y=-2 or y=2

The solutions to the polynomial equation y^3+y^2=4y+4 are y=-1 or y=-2 or y=2.

Solving a Quadratic Equation using the Quadratic Formula: Example 1 of 1

Example:  Solve the quadratic equation with the quadratic formula.

2x^2+7=4x

Solution:

The original equation.
2x^2+7=4x
Write the equation so that all of the terms are on the same side.
2x^2+7=4x
2x^2+7-4x=4x-4x
2x^2-4x+7=0
Identify a, b and c.
a=2, b=-4, c=7
2x^2-4x+7=0
The quadratic formula.
x={-b pm sqrt{b^2-4ac}}/{2a}
Substitute the values into the quadratic formula.
x={-b pm sqrt{b^2-4ac}}/{2a}
x={-(-4) pm sqrt{(-4)^2-4(2)(7)}}/{2(2)}
Simplify using order of operations by applying powers, multiplying and then subtracting.
x={-(-4) pm sqrt{(-4)^2-4(2)(7)}}/{2(2)}
x={4 pm sqrt{16-56}}/{4}
x={4 pm sqrt{-40}}/{4}
Simplify the radical by looking for perfect square factors of 40.
x={4 pm sqrt{-40}}/{4}
x={4 pm sqrt{-1(4)(10)}}/{4}
x={4 pm 2i sqrt{10}}/{4}
Simplify by canceling the common factor of 2 out of the terms in the numerator and denominator.
x={4 pm 2i sqrt{10}}/{4}
x={2(2) pm 2i sqrt{10}}/{2(2)}
x={2 pm i sqrt{10}}/{2}

The solutions to the quadratic equation are x={2 + i sqrt{10}}/{2} and x={2 - i sqrt{10}}/{2}.

The website of Professor Amanda Sartor

The darknet market, exemplified by Ares Market, operates on anonymity and security, offering illicit goods and services using cryptocurrency like XMR and BTC. Its focus on speed and safety attracts users seeking alternative marketplaces. See darknet markets reviews at darkfail