Category Archives: 5.5 Applications of Exponential and Logarithmic Functions
Application of Exponential Functions: Population Growth
Application: Exponential Growth
Application: Exponential Growth and Decay
Application of Exponential Functions: Doubling Time
Example:
How long does it take for an investment to double if it is invested at 18% compounded continuously?
Solution:
Since this question involve continuous compound interest, we will use the associated formula.
We are given that the interest rate is 18% or 0.18. This tells me that when r=0.18 Since we are looking for the doubling time, A will be 2 times P. I can write that in symbols A=2P.
Substitute these values into the continuous compound formula and solve for the interest rate.
Substitute the values of r and A into the formula | |
Solve for t by dividing both sides by P and simplifying | |
Solve for t by taking the log of both sides. | |
Solve for t by dividing both sides by 0.18 and simplifying | |
Find the value in the calculator | |
Write the answer rounded to two decimal places |
It will take 3.85 years to double your money when interest is compounded continuously at 18%.
If you need to write this in years and months, you will need to convert the 0.85 to months. Since there are 12 months in a year, multiply 0.85 by 12 to get 10.2. I will round to the nearest months to get 10.
It will take 3 years and 10 months to double your money when interest is compounded continuously at 18%.
Here is a video that is similar except that you are looking for the investment to triple.
Application: Exponential Growth and Decay (Half-life)
Example: The half life of radium is 1690 years. If 50 grams are present now, how much will be present in 630 years?
Solution: There is a two part process to this problem. Part 1: Use some of the information to find the decay rate of radium. Part 2: Answer the question using the rest of the given information.
Part 1: Find the decay rate of radium.
Since we are using an exponential model for this problem we should be clear on the parts of the exponential decay model.
Exponential Decay Model
is the initial amount
is the decay rate
is the time
is the amount after t time has passed
Since radium has a half life of 1690 years, we know that after 1690 years there will be half of the initial amount of radium left. This allows me to establish a relationship between the initial amount and the amount after 1690. The amount after 1690 year is half of the initial amount. when the .
Substitute these values into the exponential decay formula and solve for k.
Using only the information about radium having a half-life of 1690 years I have found the decay rate for radium.
Note: Although I have put an approximation for k here, try not to round until the very last step.
Part 2: Answer the question using the rest of the given information.
Given information: If 50 grams are present now, how much will be present in 630 years?
With this information I can identify the initial amount of radium as 50 grams and the time to be 630 years. Symbolically that is when the . Substitute the given information and the decay rate k found in part 1 to the exponential decay formula.
, , and |
|
38.615 grams will be present 630 years later is 50 grams are present initially.
Here is a video example that is similar to the above example and it shows how to enter information in the calculator.
Application of Exponential Functions: Finding the Interest Rate
Example:
What is the interest rate necessary for an investment to quadruple after 7 year of continuous compound interest?
Solution:
Since this question involve continuous compound interest, we will use the associated formula.
We are given that the invest quadruples in 7 years. This tells me that when t=7 that A will be 4 times P. I can write that in symbols A=4P.
Substitute these values into the continuous compound formula and solve for the interest rate.
Substitute the values of t and A into the formula | |
Solve for r by dividing both sides by P and simplifying | |
Solve for r by taking the log of both sides. | |
Solve for r by dividing both sides by 7 and simplifying | |
Find the value in the calculator | |
Write the answer as a percentage rounded to two decimal places |