Category Archives: Difference Quotient

Difference Quotient: Quadratic Function

Example:  Find the difference quotient for f(x)=x^2-9x

The Difference Quotient:{f(x+h)-f(x)}/h

Solution:

The Difference Quotient Formula
{f(x+h)-f(x)}/h
Write the difference quotient for the given function
={(x+h)^2-9(x+h)-(x^2-9x)}/h
Apply the exponent and use the distributive property
={(x+h)(x+h)-9x-9h-x^2+9x}/h
Multiply
={x^2+xh+xh+h^2-9x-9h-x^2+9x}/h
Combine the like terms
={x^2+2xh+h^2-9x-9h-x^2+9x}/h
Combine the like terms.  Only terms with h should remain
={2xh+h^2-9h}/h
Divide h into each term
={2xh}/h+{h^2}/h-{9h}/h
Cancel the common h from each term
=2x+h-9

Difference Quotient: Rational Function

Example:  Find the difference quotient for f(x)={4x}/{x+5}

The Difference Quotient:{f(x+h)-f(x)}/h

Solution:

The Difference Quotient Formula
{f(x+h)-f(x)}/h
Write the difference quotient for the given function
={{4(x+h)}/{(x+h)+5}-{4x}/{x+5}}/h
Use the distributive property
={{4x+4h}/{x+h+5}-{4x}/{x+5}}/h
Simplify the complex fraction by multiplying the numerator and denominator by the common denominator
={{4x+4h}/{x+h+5}-{4x}/{x+5}}/h {{(x+5)(x+h+5)}/1}/ {{(x+5)(x+h+5)}/1}
Distribute the common denominator to each fraction in the numerator.
={{(4x+4h)(x+5)(x+h+5)}/{x+h+5}-{4x(x+5)(x+h+5)}/{x+5}} /{h(x+5)(x+h+5)}
Cancel the common factor
={{(4x+4h)(x+5)}-{4x(x+h+5)}} /{h(x+5)(x+h+5)}
 Multiply the expression in the numerator
={4x^2+20x+4xh+20h-4x^2-4xh-20x} /{h(x+5)(x+h+5)}
 Combine like terms
={20h} /{h(x+5)(x+h+5)}
 Cancel a common h from the numerator and denominator
={20} /{(x+5)(x+h+5)}

 

Difference Quotient: Rational Function

Example:  Find the difference quotient for f(x)=1/x^2

The Difference Quotient:{f(x+h)-f(x)}/h

Solution:

The Difference Quotient Formula
{f(x+h)-f(x)}/h
Write the difference quotient for the given function
={1/(x+h)^2-1/x^2}/h
Simplify the complex fraction by multiplying the numerator and denominator by the common denominator
={1/(x+h)^2-1/x^2}/h {{x^2(x+h)^2}/1}/{{x^2(x+h)^2}/1}
Distribute the common denominator to each fraction in the numerator.
={1/(x+h)^2-1/x^2}/h {{x^2(x+h)^2}/1}/{{x^2(x+h)^2}/1}
={{x^2(x+h)^2}/(x+h)^2-{x^2(x+h)^2}/x^2}/{h{x^2(x+h)^2}}
Cancel the common factor
={{x^2(x+h)^2}/(x+h)^2-{x^2(x+h)^2}/x^2}/{h{x^2(x+h)^2}}
={x^2-(x+h)^2}/{h{x^2(x+h)^2}}
Simplify by squaring the binomial
={x^2-(x+h)^2}/{h{x^2(x+h)^2}}
={x^2-(x+h)(x+h)}/{h{x^2(x+h)^2}}
={x^2-(x^2+xh+xh+h^2)}/{h{x^2(x+h)^2}}
Simplify by combining like terms and distributing the negative
={x^2-(x^2+2xh+h^2)}/{hx^2(x+h)^2}
={x^2-x^2-2xh-h^2}/{hx^2(x+h)^2}
 Combine like terms
={-2xh-h^2}/{hx^2(x+h)^2}
 Cancel a common h from the numerator and denominator
={-2x-h}/{x^2(x+h)^2}

The difference quotient for f(x)=1/x^2 is {-2x-h}/{x^2(x+h)^2}