All posts by admin

Application of Exponential Functions: Finding the Interest Rate

Example:

What is the interest rate necessary for an investment to quadruple after 7 year of continuous compound interest?

Solution:

Since this question involve continuous compound interest, we will use the associated formula.

A=Pe^{rt}

We are given that the invest quadruples in 7 years.  This tells me that when t=7 that A will be 4 times P.  I can write that in symbols A=4P.

Substitute these values into the continuous compound formula and solve for the interest rate.

Continuous compound formula
A=Pe^{rt}
Substitute the values of t and A into the formula
A=Pe^{rt}
4P=Pe^{r*7}
4P=Pe^{7r}
Solve for r by dividing both sides by P and simplifying
4P=Pe^{7r}
{4P}/P={Pe^{7r}}/P
4=e^{7r}
Solve for r by taking the log of both sides.
4=e^{7r}
ln 4=ln e^{7r}
Solve for r by using the power rule and simplifying
ln 4=ln e^{7r}
ln 4=7r ln e
ln 4=7r (1)
ln 4=7r
Solve for r by dividing both sides by 7 and simplifying
ln 4=7r
{ln 4}/7={7r}/7
{ln 4}/7=r
Find the value in the calculator
{ln 4}/7=r
0.1980420516=r
Write the answer as a percentage rounded to two decimal places
r=0.1980420516
r=19.80420516%
r=19.80%

 

Solve an exponential equation: Take the log of both sides

Example:

(1.41)^x = (sqrt{2})^{1-4x}

Solution:

 

The exponential equation
 (1.41)^x = (sqrt{2})^{1-4x}
Since the bases cannot be easily written the same use the method of taking the log of both sides
(1.41)^x = (sqrt{2})^{1-4x}
ln (1.41)^x = ln (sqrt{2})^{1-4x}
Use the power rule for logarithms
ln (1.41)^x = ln (sqrt{2})^{1-4x}
x ln (1.41) = (1-4x) ln sqrt{2}
Use the distributive law
x ln (1.41) = (1-4x) ln sqrt{2}
x ln (1.41) = ln sqrt{2}-4x ln sqrt{2}
Collect the terms with x to one side and collect the terms without x on the other side
x ln (1.41) = ln sqrt{2}-4x ln sqrt{2}
x ln (1.41) +4x ln sqrt{2}= ln sqrt{2}-4x ln sqrt{2} +4x ln sqrt{2}
x ln (1.41) +4x ln sqrt{2}= ln sqrt{2}
Factor the common x
x ln (1.41) +4x ln sqrt{2}= ln sqrt{2}
x( ln (1.41) +4 ln sqrt{2})= ln sqrt{2}
Solve for x by dividing both sides by the factor in the parenthesis and simplify
x( ln (1.41) +4 ln sqrt{2})= ln sqrt{2}
{x( ln (1.41) +4 ln sqrt{2})}/{ ln (1.41) +4 ln sqrt{2}}= {ln sqrt{2}}/{ ln (1.41) +4 ln sqrt{2}}
x = {ln sqrt{2}}/{ ln (1.41) +4 ln sqrt{2}}
The solution
x = {ln sqrt{2}}/{ ln (1.41) +4 ln sqrt{2}}
x =0.2003

When you type this into a calculator be sure to use parenthesis around the numerator and around the denominator.  Here is an example of how you might enter it.

(ln (sqrt{2}))/(ln(1.41)+4 ln(sqrt{2}))

Here is a youtube video with a similar example.

Solve the Logarithmic Equation by the one to one property

Example:

2 log_3(7-x)-log_3 2=log_3 18

Solution:

 

The logarithmic equation
2 log_3(7-x)-log_3 2=log_3 18
Use the power rule and the quotient rule to condense to a single logarithm
2 log_3(7-x)-log_3 2=log_3 18
log_3(7-x)^2-log_3 2=log_3 18
log_3((7-x)^2/ 2)=log_3 18
Since both sides of the equation have the same log base the expressions inside the logarithms must be equal
log_3((7-x)^2/ 2)=log_3 18
(7-x)^2/ 2= 18
Clear the denominator by multiplying by 2 on both sides and simplifying
(7-x)^2/ 2= 18
2*(7-x)^2/ 2= 2*18
(7-x)^2= 36
Get rid of the square by square rooting both sides and simplifying
(7-x)^2= 36
sqrt{(7-x)^2}= sqrt{36}
7-x= pm 6
Get x by itself by subtracting 7 on both sides
7-x= pm 6
7-7-x=-7 pm 6
-x=-7 pm 6
Get x by itself by dividing both sides by negative 1
-x=-7 pm 6
-x/-1={-7 pm 6}/-1
x=7 pm 6
x=7 + 6 or x=7 - 6
x=13 or x=1
Check x=13
2 log_3(7-13)-log_3 2=log_3 18
2 log_3(-6)-log_3 2=log_3 18
Log of a negative is undefined.  Exclude this solution.
Check x=1
2 log_3(7-1)-log_3 2=log_3 18
2 log_3(6)-log_3 2=log_3 18
log_3(6)^2-log_3 2=log_3 18
log_3 36-log_3 2=log_3 18
log_3 36/2=log_3 18
log_3 18=log_3 18
Keep this solution.

The solution to the equation is x=1.

Here is a youtube video that is similar.

Solve an Exponential Equation: Take the log of both sides

Problem:  Solve the exponential equation.

16^{3x-3}=3^{x-3}

Solution:

The exponential equation
16^{3x-3}=3^{x-3}
Since the bases cannot be easily written the same, use the method of taking the log of both sides
ln (16^{3x-3})=ln (3^{x-3})
Use the power rule for logarithms.
(3x-3)ln16=(x-3)ln3
Use the distributive property.
3xln16-3ln16=xln3-3ln3
Collect the terms with x to one side and collect the terms without x on the other side.
3xln16-3ln16=xln3-3ln3
3xln16-3ln16+3ln16=xln3-3ln3+3ln16
3xln16-xln3=xln3-xln3-3ln3+3ln16
3xln16-xln3=-3ln3+3ln16
3xln16-xln3=3ln16-3ln3
Factor the common x.
3xln16-xln3=3ln16-3ln3
x(3ln16-ln3)=3ln16-3ln3
Solve for x by dividing both sides by the factor in the parenthesis and simplify.
x(3ln16-ln3)=3ln16-3ln3
{x(3ln16-ln3)}/{3ln16-ln3}={3ln16-3ln3}/{3ln16-ln3}
x={3ln16-3ln3}/{3ln16-ln3}
The solution
x={3ln16-3ln3}/{3ln16-ln3}
x = 0.6956

When you type this into a calculator be sure to use parenthesis around the numerator and around the denominator.  Here is an example of how you might enter it.

(3ln(16)-3ln(3))/(3ln(16)-ln(3))

Solving an Exponential Equation: Relating the Bases

Example:  Solve the exponential equation.

4^{x-9}=1/1024

Solution:

The exponential equation
4^{x-9}=1/1024
Try to write both sides of the equation with the same base.  Try 4 since there is a base of 4 on the left 4^{x-9}=1/4^5
Using a property of negative exponents move the base to the numerator  4^{x-9}=4^{-5}
Now that that the bases are the same the exponents must be equal  4^{x-9}=4^{-5}

x-9=-5

Solve for x
 x-9=-5

x-9+9=-5+9

x=4

The solution the the exponential equation is 4.

Here is a youtube video with a similar example.