5.4B Logarithmic Equations

- Solving Logarithmic Equations
- Method of Converting to an Exponential
- Method of Converting to an Exponential in Symbols and Words

1. Recognize a logarithmic equation with the logarithm on one side. $\left[y=\log _{b} x\right]$
2. Convert to an exponential equation using the following equivalence. $\left[b^{y}=x\right]$
3. Solve the remaining equation by isolating x .
\checkmark Examples of Solving Logarithmic Equations

- Example 1: $\log _{2}(1-2 x)=3$
- Example 2: $\log _{5}(x+6)+\log _{5}(x+2)=1$
- Example 3: $\log _{3} x^{2}=4$

マ Example 4: $\log _{4} x=3$

V Example 5: $\log _{5}(x-3)=2$

マ Example 6: $2 \ln x=8$

- Example 7: $\log _{2} x+\log _{2}(x-2)=3$

V Method of Using the Property of Equality or the One-to-One Property

- Method in Symbols

1. Recognize a logarithmic equation with logarithms of the same base on both sides. $\left[\log _{b} u=\log _{b} v\right]$
2. Apply the property of equality or one-to-one property which states that if you have logarithms of the same base on both sides the expressions inside the logarithms must be equal. $[u=v]$
3. Solve the remaining equation.

- Examples of Solving Logarithmic Equations
∇ Example 1: $\log _{5}(x-4)=\log _{5} 6$
- Example 2: $2 \log _{5} x=\log _{5} 9$

V Example 3: $\log _{3} 2+\log _{3}(x-3)=\log _{3} 10$

マ Example 4: $\log (x+3)+\log (x-2)=\log 14$
∇ Example 5: $\ln x+\ln (x-4)=\ln (x+6)$

