5.4A Exponential Equations

V Solving Exponential Equations
V Method: Relating the Bases or One-to-One Property

- Method of Relating the Bases in Symbols and Words

1. Write the equation in a form where the bases are the same on both sides. $\left[b^{u}=b^{v}\right]$
2. Use the one-to-one property which states if the bases are the same then the exponents are equal. $[u=v]$

- Examples of Solving Exponential Equations by Relating the Bases

V Example 1: $4^{2 x+1}=8^{x}$

- Example 2: $e^{-x^{2}}=\left(e^{x}\right)^{2} \cdot \frac{1}{e^{3}}$
∇ Example 3: $3^{7 x}=9^{2 x-5}$
- Example 4: $3^{5 x} \cdot 9^{x^{2}}=27$

V Example 5: $5^{x}-2=23$

V Example 6: $3^{x+1}=9^{5 x}$

V Example 7: $7^{x^{2}+3 x}=\frac{1}{49}$

V Example 8: $9^{x^{2}}=3^{-5 x-2}$

マ Example 9： $5^{2 x^{2}+3 x}=25^{6-x}$

マ Example 10：$\left(e^{-x}\right)^{2}=\frac{e^{x}}{e^{2}}$
－Method：Convert to Logarithmic Equation
－Method of Converting to a Logarithm in Symbols and Words
1．Recognize an exponential equation．$y=b^{x}$
2．Rewrite the exponential equation as a logarithmic equation using the following equivalence．$\left[\log _{b} y=x\right]$
3．Solve the remaining equation to find solutions．
－Examples of Solving Exponential Equations
－Example 1： $2^{x}=5$

マ Example 2： $8 \cdot 3^{x}=5$

V Example 3： $5^{x-2}=3^{3 x+2}$

V Example 4: $3^{x}=8$

マ Example 5: $10^{x}=1500$
∇ Example 6: $5^{x-3}=137$

V Example: 7: $7^{2 x+1}=3^{x+5}$
$\boldsymbol{\text { Example 8: }} 500 e^{3 x}+40=1040$
$\boldsymbol{\nabla}$ Method: Take the Log of Both Sides

- Method of Take the Log of Both Sides in Symbols and Words

1. Recognize an exponential equation. $\left[y=b^{x}\right]$
2. Use the one-to-one property for logarithms and take the natural log of both sides. $\left[\ln y=\ln b^{x}\right]$
3. Use the power rule for logarithms which allows you to move the power inside the logarithm to become the coefficient of the logarithm. $[\ln y=x \ln b]$
4. Solve for the variable by dividing. $\left[\frac{\ln y}{\ln b}=x\right]$

$$
\begin{aligned}
y & =b^{x} \\
\ln y & =\ln b^{x} \\
\ln y & =x \ln b \\
\frac{\ln y}{\ln b} & =\frac{x \ln b}{\ln b} \\
\frac{\ln y}{\ln b} & =x
\end{aligned}
$$

- Examples of Solving Exponential Equations
- Example 1: $2^{x}=5$
∇ Example 2: $8 \cdot 3^{x}=5$

V Example 3: $5^{x-2}=3^{3 x+2}$

『 Example 4: $3^{x}=8$

∇ Example 5: $10^{x}=1500$

च Example 6: $5^{x-3}=137$

V Example: 7: $7^{2 x+1}=3^{x+5}$

マ Example 8: $500 e^{3 x}+40=1040$
$\boldsymbol{\nabla}$ Method: Quadratic in Form or u-substitution
V Method of Quadratic in Form in Symbols and Words

1. Recognize an equation is quadratic in form $\left[a \cdot w^{2 x}+b \cdot w^{x}+\right.$ $c=0]$
2. The substitution $u=w^{x}$ turns the equation into a quadratic equation.
$\left[a u^{2}+b u+c=0\right]$
3. Solve the quadratic equation by factoring, the square root method, completing the square or the quadratic formula. $[u=l$ or $u=m$]
4. Return to the original equation to the original equation using the same substitution as before. $\left[w^{x}=l\right.$ or $\left.w^{x}=m\right]$
5. Solve the remaining exponential equation.

- Examples of Solving Exponential Equations by u-substitution

च Example 1: $e^{2 x}-2 e^{x}-3=0$

- Example 2: $4^{x}-2^{x}-12=0$

