5.1A Exponential Functions

- Definition of an Exponential Function

An exponential function is a function of the form

$$
f(x)=b^{x}
$$

where x is any real number and $b>0$ such that $b \neq 1$.
Definition of the Natural Base
The number e is an irrational number and is defined by the expression $\left(1+\frac{1}{n}\right)^{n}$ as $n \rightarrow \infty$.
The expression $\left(1+\frac{1}{n}\right)^{n} \rightarrow e \approx 2.718$ as $n \rightarrow \infty$.

- Examples of Graphing Basic Exponential Functions
- Example 1: Graph $y=2^{x}$ by plotting points

x	y	(x, y)

マ Example 2: Graph $y=\left(\frac{1}{3}\right)^{x}$ by plotting points

V Example 3: Graph $y=e^{x}$ by plotting points

- Characteristics of an Exponential Function in the form $f(x)=b^{x}$
- Domain: $(-\infty, \infty)$
- Range: $(0, \infty)$
- Intersects the y-axis at $(0,1)$
- One-to-one function
- Horizontal asymptote at $y=0$
∇ If $b>1$
- Increasing on the domain
- $b^{x} \rightarrow \infty$ as $x \rightarrow \infty(y$ approaches infinity as x approaches infinity)
- $b^{x} \rightarrow 0$ as $x \rightarrow-\infty(y$ approaches 0 as x approaches negative infinity)
$\boldsymbol{\nabla}$ If $0<b<1$
- Decreasing on the domain
- $b^{x} \rightarrow 0$ as $x \rightarrow \infty(y$ approaches 0 as x approaches infinity)
- $b^{x} \rightarrow \infty$ as $x \rightarrow-\infty(y$ approaches infinity as x approaches negative infinity)

V Examples: Graphing Transformations

V Example 1: Graph $f(x)=-2^{x-3}-5$ by Transformations

Base Function:
List Transformations:
\qquad
\qquad
\qquad

マ Example 2: Graph $f(x)=-\left(\frac{1}{3}\right)^{x+5}+2$ by Transformations
Base Function:
List Transformations:
\qquad
\qquad
\qquad

$\boldsymbol{\nabla}$ Example 3: Graph $f(x)=-e^{-x}$ by Transformation

Base Function:
List Transformations:
\qquad
\qquad
\qquad

- One-to-one Property for Exponential Function (Relating the Bases)

If $b^{u}=b^{v}$ then $u=v$
This happens because exponential functions are one-to-one functions and by definition different x values have different y values and therefore if the y values are the same the x values are the same.

V Solving Exponential Equations: Relating the Bases or One-to-One Property
V Method of Relating the Bases in Symbols

$$
\begin{aligned}
b^{u} & =b^{v} \\
u & =v
\end{aligned}
$$

V Method of Relating the Bases in Words

- Requires the exponential equation to have the bases on both sides the same
- When the bases are the same the exponents must be equal because of the one-to-one property of exponential functions.
- Examples of Solving Exponential Equations by Relating the Bases

マ Example 1: Solve. $3^{x}=81$
∇ Example 2: Solve. $\sqrt{5}=125^{x}$

- Example 3: Solve. $\frac{1}{\sqrt[3]{216}}=6^{x}$

V Example 4: Solve. $e^{x}=\frac{1}{e^{13}}$

マ Example 5: Solve. $5^{x-1}=\frac{1}{25}$

V Example 6: Solve. $3^{x+1}=9^{5 x}$

V Example 7: Solve. $\left(e^{x^{2}}\right)^{5}=e^{180}$

マ Example 8: Solve. $6^{x^{3}}=\frac{1296^{x}}{216^{-x^{2}}}$

マ Example 9: Solve. $e^{x^{2}}=e^{x} \cdot e^{12}$

च Example 10: Solve. $e^{x^{2}}=\frac{e^{8}}{\left(e^{x}\right)^{2}}$

