5.1A Exponential Functions

▼ Definition of an Exponential Function

An exponential function is a function of the form

$$f(x) = b^x$$

where x is any real number and b>0 such that b
eq 1 .

▼ Definition of the Natural Base

The number e is an irrational number and is defined by the expression $\left(1+rac{1}{n}
ight)^n$ as $n o\infty.$

The expression $\left(1+rac{1}{n}
ight)^n o e pprox 2.718$ as $n o \infty.$

- ▼ Examples of Graphing Basic Exponential Functions
 - ▼ Example 1: Graph $y = 2^x$ by plotting points

▼ Example 2: Graph $y = \left(rac{1}{3}
ight)^x$ by plotting points

▼ Example 3: Graph $y = e^x$ by plotting points

- ullet Characteristics of an Exponential Function in the form $f(x)=b^x$
 - Domain: $(-\infty,\infty)$
 - Range: $(0,\infty)$
 - Intersects the y-axis at (0,1)
 - One-to-one function
 - Horizontal asymptote at y=0
 - ${\bf \P} \text{ If } b>1$
 - Increasing on the domain
 - $b^x o \infty$ as $x o \infty$ (y approaches infinity as x approaches infinity)
 - $b^x o 0$ as $x o -\infty$ (y approaches 0 as x approaches negative infinity)
 - $\blacktriangledown \ \mathrm{lf} \ 0 < b < 1$
 - Decreasing on the domain
 - $b^x
 ightarrow 0$ as $x
 ightarrow \infty$ (y approaches 0 as x approaches infinity)
 - $b^x o \infty$ as $x o -\infty$ (yapproaches infinity as xapproaches negative infinity)

- ▼ Examples: Graphing Transformations
 - ▼ Example 1: Graph $f(x) = -2^{x-3} 5$ by Transformations

ullet Example 3: Graph $f(x)=-e^{-x}$ by Transformation

Base Function: ______ List Transformations:

One-to-one Property for Exponential Function (Relating the Bases)
 If $b^u = b^v$ then u = v

This happens because exponential functions are one-to-one functions and by definition different x values have different y values and therefore if the y values are the same the x values are the same.

- ▼ Solving Exponential Equations: Relating the Bases or One-to-One Property
 - ▼ Method of Relating the Bases in Symbols

$$egin{array}{ll} b^u = b^v \ u = v \end{array}$$

- ▼ Method of Relating the Bases in Words
 - Requires the exponential equation to have the bases on both sides the same
 - When the bases are the same the exponents must be equal because of the one-to-one property of exponential functions.
- ▼ Examples of Solving Exponential Equations by Relating the Bases
 - **v** Example 1: Solve. $3^x = 81$

ullet Example 2: Solve. $\sqrt{5}=125^x$

▼ Example 3: Solve.
$$rac{1}{\sqrt[5]{216}}=6^x$$

▼ Example 4: Solve. $e^x = \frac{1}{e^{13}}$

▼ Example 5: Solve. $5^{x-1} = \frac{1}{25}$

ullet Example 6: Solve. $3^{x+1}=9^{5x}$

▼ Example 7: Solve.
$$\left(e^{x^2}\right)^5 = e^{180}$$

▼ Example 8: Solve.
$$6^{x^3} = rac{1296^x}{216^{-x^2}}$$

▼ Example 9: Solve. $e^{x^2} = e^x \cdot e^{12}$

▼ Example 10: Solve.
$$e^{x^2} = rac{e^8}{(e^x)^2}$$