3.2B Properties of a Function's Graph (Algebraically)

- Intercepts\Real Zeros
vefinition of an \mathbf{x}-intercept
An \mathbf{x}-intercept is the ordered pair where the graph crosses or touches the x-axis.
∇ Definition of a \mathbf{y}-intercept
A \mathbf{y}-intercept is the ordered pair where the graph crosses or touches the y-axis.

V Definition of a real zero
A real number $x=c$ is a real zero of a function f if $f(c)=0$. Real zeros are also x-intercepts.

- Examples: Find the intercepts\real zeros
- Example 1

$$
f(x)=-3 x+6
$$

- Example 2

$$
g(x)=x^{2}-x-12
$$

- Example 3

$$
h(x)=6 x^{2}+13 x-28
$$

V Example 4

$$
s(x)=4 x^{2}+5 x+2
$$

- Example 5

$$
q(x)=|x+4|-5
$$

V Example 6

$$
f(x)=|x-7|+3
$$

V Example 7
$f(x)=\sqrt{x+4}-3$

- Example 8
$f(x)=2 x^{3 / 2}-16$

Even, Odd, or Neither

- Symmetry

- Definition of an Even Function

A function f is even if for every x in the domain, $f(x)=f(-x)$. The graph of an even function is symmetric about the y-axis. For each point (x, y) on the graph, the point $(-x, y)$ is also on the graph.
vefinition of an Odd Function
A function f is odd if for every x in the domain, $-f(x)=f(-x)$. The graph of an odd function is symmetric about the origin. For each point (x, y) on the graph, the point $(-x, y)$ is also on the graph.

V Determining if a Function is Even or Odd Algebraically
Calculate $f(-x)$
If $f(-x)$ is the same as $f(x)$, the function is even.
If $f(-x)$ is the opposite of $f(x)$, the function is odd.
If $f(-x)$ doesn't fit the above definitions state the function is neither even or odd.

V Examples: Determine if the function is even odd or neither.

- Example 1

$$
f(x)=x^{2}-9
$$

V Example 2

$$
g(x)=x^{3}-x
$$

v Example 3

$$
h(x)=x^{3}-1
$$

V Example 4

$$
f(x)=|x|+7
$$

v Example 5

$$
f(x)=\frac{2}{x}
$$

