3.2A Properties of a Function's Graph (Graphically)

- Intercepts

V Definition of an \mathbf{x}-intercept
An \mathbf{x}-intercept is the ordered pair where the graph crosses or touches the x-axis.

V Definition of a \mathbf{y}-intercept
A y-intercept is the ordered pair where the graph crosses or touches the y-axis.

- Domain and Range
- Definition of Domain

The domain is the set of all first coordinates. (x's)
\checkmark Definition of Range
The range is the set of all second coordinates. (y's)
V Increasing, Decreasing, Constant

- Definition of Increasing

A function f is increasing on an interval (a, b) if, for any x_{1} and x_{2} chosen from the interval with $x_{1}<x_{2}$, the $f\left(x_{1}\right)<f\left(x_{2}\right)$. (The graph of an increasing function always goes "up" from left to right.)

A function f is decreasing on an interval (a, b) if, for any x_{1} and x_{2} chosen from the interval with $x_{1}<x_{2}$, the $f\left(x_{1}\right)<f\left(x_{2}\right)$. (The graph of an decreasing function always goes "down" from left to right.)

- Definition of Constant

A function f is constant on an interval (a, b) if, for any x_{1} and x_{2} chosen from the interval with $x_{1}<x_{2}$, the $f\left(x_{1}\right)=f\left(x_{2}\right)$. (The graph of an decreasing function always goes "down" from left to right.)

- Relative Minimum or Relative Maximum
v Definition of Relative Maximum
When a function changes from increasing to decreasing at a point $(c, f(c))$, then f is said to have a relative maximum at $x=c$. the relative maximum is $f(c)$.

$\boldsymbol{\nabla}$ Definition of Relative Minimum
When a function changes from decreasing to increasing at a point $(c, f(c))$, then f is said to have a relative minimum at $x=c$. the relative minimum is $f(c)$.

- Symmetry

V Examples of x-axis symmetry

V Examples of y-axis symmetry

- Examples of origin symmetry

v Even, Odd or Neither

- Definition of an Even Function

A function f is even if for every x in the domain, $f(x)=f(-x)$. The graph of an even function is symmetric about the y-axis. For each point (x, y) on the graph, the point $(-x, y)$ is also on the graph.
v Definition of an Odd Function
A function f is odd if for every x in the domain, $-f(x)=f(-x) f(x)=$ $f(-x)$. The graph of an odd function is symmetric about the origin. For each point (x, y) on the graph, the point $(-x, y)$ is also on the graph.

Examples

1. Does the graph on the right represent a function? \qquad
2. Does the graph on the right represent a one-to-one function? \qquad
3. Which type of symmetry does the graph have? (circle one) x-axis, y-axis, or origin or no symmetry
4. Identify the intercepts of the graph above. Write the intercepts as ordered pairs.
x-intercept(s): \qquad
y-intercept(s): \qquad
5. Use the graph above to determine the domain and range. Use interval notation.

Domain: \qquad
Range: \qquad
6. Use the graph above to determine the intervals of increasing and decreasing. Use interval notation.
\qquad
Decreasing:
\qquad
7. Use the graph above
a. to find the numbers if any at which f has a relative minimum and what are these relative
\qquad at $\mathrm{X}=$
b. to find the numbers if any at which f has a relative maximum and what are these relative maxima? (relative maximum of \qquad at $\mathrm{x}=$ \qquad
8. Use the graph above to find the following.
a. Find $f(x)$ for $x=$ \qquad ?
b. Find $f(x)$ for $\mathrm{x}=$ \qquad ?
c. For what value of x is $f(x)=$?
d. For what values of x is $f(x) \leq 0$?

1. Does the graph on the right represent a function? \qquad
2. Does the graph on the right represent a one-to-one function? \qquad
3. Which type of symmetry does the graph have? (circle one) x-axis, y-axis, or origin or no symmetry
4. Identify the intercepts of the graph above. Write the intercepts as ordered pairs.
x-intercept(s): \qquad
y-intercept(s): \qquad
5. Use the graph above to determine the domain and range. Use interval notation.

Domain: \qquad
Range: \qquad
6. Use the graph above to determine the intervals of increasing and decreasing. Use interval notation.

Increasing: \qquad
Decreasing: \qquad
Constant:
7. Use the graph above
a. to find the numbers if any at which f has a relative minimum and what are these relative minima? (relative minimum of \qquad at $\mathrm{x}=$ \qquad
b. to find the numbers if any at which f has a relative maximum and what are these relative maxima? (relative maximum of \qquad at $\mathrm{x}=$ \qquad
8. Use the graph above to find the following.
a. Find $f(x)$ for $\mathrm{x}=$ \qquad ?
b. Find $f(x)$ for $\mathrm{x}=$ \qquad ?
c. For what value of x is $f(x)=$ \qquad $?$
d. For what values of x is $f(x) \leq 0$?

1. Does the graph on the right represent a function? \qquad
2. Does the graph on the right represent a one-to-one function? \qquad
3. Which type of symmetry does the graph have? (circle one) x-axis, y-axis, or origin or no symmetry
4. Identify the intercepts of the graph above. Write the intercepts as ordered pairs.
x-intercept(s): \qquad
y-intercept(s): \qquad
5. Use the graph above to determine the domain and range. Use interval notation.

Domain: \qquad

Range: \qquad
6. Use the graph above to determine the intervals of increasing and decreasing. Use interval notation.

Increasing: \qquad
Decreasing: \qquad
Constant:
7. Use the graph above
a. to find the numbers if any at which f has a relative minimum and what are these relative minima? (relative minimum of \qquad at $x=$ \qquad _)
b. to find the numbers if any at which f has a relative maximum and what are these relative maxima? (relative maximum of \qquad at $\mathrm{x}=$ \qquad
8. Use the graph above to find the following.
a. Find $f(x)$ for $\mathrm{x}=$ \qquad ?
b. Find $f(x)$ for $x=$ \qquad ?
c. For what value of x is $f(x)=$ \qquad $?$
d. For what values of x is $f(x) \leq 0$?

