3.6B Inverse Functions

▼ Definition of Inverse Function

Let f be a one-to-one function with domain A and range B. Then f^{-1} is the inverse of f with domain B and range A. Furthermore, if f(a) = b then $f^{-1}(b) = a$.

▼ Find the inverse from a set of ordered pairs, find the domain and range, determine if each set of ordered pairs is a one-to-one function.

▼ Example 1: $\{(1, 10), (2, 10), (3, 10)\}$

▼ Example 2: $\{(2,3), (1,9), (-2,8), (5,2)\}$

▼ Example 3: $\{(-2,3), (5,6), (-2,1), (3,8)\}$

- Example Takeaways
 - Switch the x and y to find the inverse
 - The inverse is a function only when the original function is one-to-one
 - The domain of f is the range of f^{-1}
 - The range of f is the domain of f^{-1}

- ▼ Verify the Functions are Inverse Functions
 - ▼ Cancellation Properties of Inverse Functions

$$(f\circ f^{-1})(x)=x\ (f^{-1}\circ f)(x)=x$$

Note: This property is true for every x using the definition of an inverse function. From the definition of an inverse function f(a) = b then $f^{-1}(b) = a$.

$$(f^{-1}\circ f)(a)=f^{-1}(f(a))=f^{-1}(b)=a ext{ and } (f\circ f^{-1})(b)=f(f^{-1}(b))=f(a)=b$$

• Determine whether f and g are inverse functions by evaluating $(f \circ g)(x)$ and $(g \circ f)(x)$.

▼ Example 1: $f(x) = rac{3}{2}x - 7$ and $g(x) = rac{2x-14}{3}$

▼ Example 2:
$$f(x) = rac{5-x}{x}$$
 and $g(x) = rac{5}{x+1}$

- ▼ Process of finding inverses from an equation
 - 1. Change f(x) to y.
 - 2. Switch the x and y.
 - 3. Solve for y.

▼ Examples: Find the inverse of the given one-to-one function. Verify the functions are inverses by calculating $f \circ f^{-1}$ and $f^{-1} \circ f$. Find the domain and range of the function and it's inverse.

▼ Example 1: f(x) = 2x - 6

$$ullet$$
 Example 2: $g(x)=x^3+1$

▼ Example 3: $h(x) = rac{5}{x} + 4$

$$ullet$$
 Example 4: $r(x)=-x^2+6$, $x\geq 0$

ullet Answer questions about the f^{-1} using the graph of f

▼ Symmetry and Inverse Functions

A function and it's inverse are symmetric around the line y = x.

▼ Use the graph of f to sketch a graph of f^{-1} .

