8.5 Partial Fraction Decomposition

\checkmark Setting the stage for partial fraction decomposition
Write as a single fraction: $\frac{2}{x-3}+\frac{5}{x+4}$

Decompose $\frac{P}{Q}$
\checkmark Case 1: Q has only nonrepeated linear factors
Assuming that Q has only nonrepeated linear factors, the polynomial Q has the form $Q(x)=\left(x-a_{1}\right)\left(x-a_{2}\right) \cdot \ldots \cdot\left(x-a_{n}\right)$, where no two of the numbers $a_{1}, a_{2}, \ldots, a_{n}$ are equal. In this case, the partial fraction decomposition of $\frac{P}{Q}$ is of the form

$$
\frac{P(x)}{Q(x)}=\frac{A_{1}}{x-a_{1}}+\frac{A_{2}}{x-a_{2}}+\ldots+\frac{A_{n}}{x-a_{n}}
$$

where the numbers $A_{1}, A_{2}, \ldots, A_{n}$ are to be determined.
v Example 1: Find the partial fraction decomposition.

$$
\frac{x}{x^{2}-5 x+6}
$$

∇ Case 2: Q has repeated linear factors
If the polynomial Q has a repeated linear factor, say $(x-a)^{n}, n \geq 2$ an integer, then, in the partial fraction decomposition of $\frac{P}{Q}$, allow for the terms

$$
\frac{A_{1}}{x-a}+\frac{A_{2}}{(x-a)^{2}}+\ldots+\frac{A_{n}}{(x-a)^{n}}
$$

where the numbers $A_{1}, A_{2}, \ldots, A_{n}$ are to be determined.
$\boldsymbol{\nabla}$ Example 2: Find the partial fraction decomposition
$\frac{x+2}{x^{3}-2 x^{2}+x}$

V Example 3: Find the partial fraction decomposition

$$
\frac{x^{3}-8}{x^{2}(x-1)^{2}}
$$

V Case 3: Q contains a nonrepeated irreducible quadratic factor
If Q contains a nonrepeated irreducible quadratic factor of the form $a x^{2}+b x+c$, then, in the partial fraction decomposition of $\frac{P}{Q}$, allow for the term

$$
\frac{A x+B}{a x^{2}+b x+c}
$$

where the numbers A and B are to be determined.

- Example 4: Find the partial fraction decomposition

$$
\frac{3 x-5}{x^{3}-1}
$$

- Case 4: Q contains a repeated irreducible quadratic factor If the polynomial Q contains a repeated irreducible quadratic factor $\left(a x^{2}+b x+\right.$ $c)^{n}, n \geq 2, n$ an integer, then, in the partial fraction decomposition of $\frac{P}{Q}$, allow for terms

$$
\frac{A_{1} x+B_{1}}{a x^{2}+b x+c}+\frac{A_{2} x+B_{2}}{\left(a x^{2}+b x+c\right)^{2}}+\ldots+\frac{A_{n} x+B_{n}}{\left(a x^{2}+b x+c\right)^{n}}
$$

V Example 5: Find the partial fraction decomposition

$$
\frac{x^{3}+x^{2}}{\left(x^{2}+4\right)^{2}}
$$

Summary

- Improper fractions: Use long division if the degree of the numerator is larger than the denominator
- Write the equation following cases 1-4
- Multiply both sides by the original denominator to clear fractions
- Solve for missing coefficients by "equating coefficients" or choosing strategic values of x
- Write the expression as a decomposed fraction

V Extra Examples
$\boldsymbol{\nabla}$ Example 6: Find the partial fraction decomposition
$\frac{x^{3}+x^{2}-3}{x^{2}+3 x-4}$

V Example 7: Find the partial fraction decomposition
$\frac{x^{4}-5 x^{2}+x-4}{x^{2}+4 x+4}$

