8.3 Systems of Linear Equations: Determinants

V Definition of 2 by 2 Determinant
If a, b, c, and d are four real numbers, the symbol

$$
D=\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|=a d-b c
$$

is called a 2 by 2 determinant. Its value is the number $a d-b c$.

- Example: Find the determinant of a 2 by 2 Matrix

$$
A=\left[\begin{array}{cc}
3 & -2 \\
6 & 1
\end{array}\right]
$$

- Cramer's Rule for Two Equations Containing Two Variables

The solution to the system of equations

$$
\left\{\begin{array}{l}
a x+b y=s \\
c x+d y=t
\end{array}\right.
$$

is given by

$$
x=\frac{\left|\begin{array}{ll}
s & b \\
t & d
\end{array}\right|}{\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|}=\frac{D_{x}}{D}
$$

$$
y=\frac{\left|\begin{array}{ll}
a & s \\
c & t
\end{array}\right|}{\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|}=\frac{D_{y}}{D}
$$

provided that

$$
D=\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|=a d-b c \neq 0
$$

V Example: Solve the System using Determinants

$$
\left\{\begin{array}{l}
3 x-2 y=4 \\
6 x+y=13
\end{array}\right.
$$

V Example: Find the determinant of a 3 by 3 Matrix

$$
A=\left[\begin{array}{ccc}
3 & 0 & -1 \\
4 & 6 & 2 \\
8 & -2 & 3
\end{array}\right]
$$

- Cramer's Rule for Three Equations Containing Three Variables

$$
x=\frac{D_{x}}{D} \quad y=\frac{D_{y}}{D} \quad z=\frac{D_{z}}{D}
$$

V Example: Solve the System using Determinants

$$
\left\{\begin{array}{l}
2 x+y-z=3 \\
-x+2 y+4 z=-3 \\
x-2 y-3 z=4
\end{array}\right.
$$

