8.2 Systems of Linear Equations: Matrices

Definition of a Matrix

A matrix is a rectangular array of numbers:

a_{11}	a_{12}	•••	a_{1j}	•••	a_{1n}]
a_{21}	a_{22}	•••	a_{2j}	•••	a_{2n}
:	• •		•		:
a_{i1}	a_{i2}	•••	a_{ij}	•••	a_{in}
:	• •		• •		:
a_{m1}	a_{m2}	•••	a_{mj}	•••	a_{mn}

Definition of Augmented Matrix

The matrix used to represent a system of linear equations is called an **augmented matrix**.

▼ Example: Write a system of two equations as an augmented matrix

$$egin{cases} 3x-4y=-6\ 2x-3y=-5 \end{cases} egin{array}{c} 2x-y+z=0\ x+z-1=0\ x+2y-8=0 \end{cases}$$

▼ Example: Write an augmented matrix as a system of equations

$\begin{bmatrix} 5 & 2 \\ -3 & 1 \end{bmatrix}$	13	[3	-1	-1	7]
$ -3 \ 1$	-10	2	0	2	8
-	-	_0	1	$-1 \\ 2 \\ 1$	0

- ▼ Row Operations
 - 1. Interchange any two rows
 - 2. Replace a row by a nonzero multiple of that row
 - 3. Replace a row by the sum of that row and a constant nonzero multiple of some other row.
- ▼ Definition of Row Echelon Form

A matrix is in row echelon form when the following conditions are met:

- 1. The entry in row 1, column 1 is a 1. and only 0's appear below it.
- 2. The first nonzero entry in each row after the first row is a 1, only 0's appear below it and the 1 appears to the right of the first nonzero entry in any row above.
- 3. Any rows that contain all 0's to the left of the vertical bar appear at the bottom.

Γ1	a	b	$\begin{bmatrix} c \end{bmatrix}$	[1	a	b	$\begin{vmatrix} c \end{vmatrix}$	[1	a	b	
			e	0	1	d	e	0	1	d	e
0	0	1	f	0	0	0	f	0	0	0	$\begin{bmatrix} e \\ 0 \end{bmatrix}$

▼ Definition of Reduced Row Echelon Form

In this form, row operations are used to	Γ1	0	0	a
obtain entries that are 0 above (as well	0	1	0	b
as below) the leading 1 in a row.	0	0	1	c

▼ Example: Write the matrix in Row Echelon Form and Reduced Row Echelon Form

[1	-2	2
3	-5	9

- ▼ Steps for Matrix Method of Solving a System of Linear Equations
 - Step 1: Write the augmented matrix that represents the system.
 - Step 2: Perform row operations that place the entry 1 in row 1, column 1.
 - Step 3: Perform row operations that leave entry 1 in row 1 column 1 unchanged, while causing 0's to appear below it in column 1.
 - Step 4: Perform row operations that place the entry 1 in row 2, column 2, but leave the entries in the columns to the left unchanged. If it is impossible to place a 1 in row 2, column 2, proceed to place a 1 in row 2, column 3. Once a 1 is in place, perform row operations to place 0's below it.
 - Step 5: Now repeat Step 4, placing a 1 in the next row, but one column to the right. Continue until the bottom row or the vertical bar is reached.
 - Step 6: The matrix that results is the row echelon form of the augmented matrix. Analyze the system of equations corresponding to it to solve the original system.
- ▼ Solve the System using Matrices

$$egin{cases} x-2y=2\ 3x-5y=9 \end{cases}$$

▼ Solve the System using Matrices

$$egin{cases} 2x+2y=6\ x+y+z=1\ 3x+4y-z=13 \end{cases}$$

▼ Solve the System using Matrices

$$egin{cases} 6x-y-z=4\ -12x+2y+2z=-8\ 5x+y-z=3 \end{cases}$$

▼ Solve the System using Matrices

$$\left\{egin{array}{l} x+y+z=6\ 2x-y-z=3\ x+2y+2z=0 \end{array}
ight.$$