8.1A Systems of Linear Equations in Two Variables

$\boldsymbol{\nabla}$ Definition of a System of Linear Equations in Two Variables

A system of linear equations in two variables is the collection of two linear equations in two variables considered simultaneously. The solution to a system of equations in two variables is the set of all ordered pairs for which both equations are true.

V Example: System of Linear Equations in Two Variables

$$
\left\{\begin{array}{l}
3 x-2 y=-9 \\
x+y=2
\end{array}\right.
$$

- Consistent vs Inconsistent

If a system has at least one solution is it considered to be consistent.
If the system does not have any solutions it is said to be inconsistent.
V Verify or Check Solutions to a System of Linear Equations
Show that the ordered pair $(-1,3)$ is a solution to the system.
$\left\{\begin{array}{l}3 x-2 y=-9 \\ x+y=2\end{array}\right.$

V Solving with Graphing

- Solving a System of Equations Using the Method of Graphing

Step 1: Graph the first equation. (All solutions to the first equation)
Step 2: Graph the second equation on the same coordinate plane. (All solutions to the second equation)

Step 3: The intersection points (points on both lines) are solutions to the system of linear equations.

Step 4: Check.

V Example: Solve a System with Graphing

$$
\left\{\begin{array}{l}
y=2 x+3 \\
2 x+3 y=6
\end{array}\right.
$$

v Solution
$\left(-\frac{3}{8}, \frac{9}{4}\right)$
V Visual Representation of Solutions in two variables

V Solving with Substitution
V Solving a System of Equations Using the Method of Substitution
Step 1: Choose an equation and solve for one variable in terms of the other.
Step 2: Substitute the expression from step 1 into the other equation. (This gives an equation with only one variable)

Step 3: Solve the equation for one variable. This gives part of the ordered pair solution.

Step 4: Substitute the value from step 3 into one of the original equations (any equation with two variables) to find the value of the other variable

Step 5: Check

V Example: Solve a System with Substitution

$$
\left\{\begin{array}{l}
5 x-4 y=9 \\
x-2 y=-3
\end{array}\right.
$$

- Solving with Elimination

V Solving a System of Equations Using the Method of Elimination
Step 1: Arrange the equations so the variables and most importantly the equal sign is lined up. Choose a variable to eliminate.

Step 2: Multiply one or both equations by an appropriate nonzero constant so that the sum of the coefficients of one of the variables is zero.

Step 3: Add the equations together to obtain an equation in one variable since 1 variable will eliminate.

Step 4: Solve the equation in one variable. This gives part of the ordered pair solution.

Step 5: Substitute the value from step 4 into one of the original equations (any equation with two variables) to find the value of the other variable.

Step 6: Check.
$\boldsymbol{\nabla}$ Example: Solve a System with Elimination

$$
\left\{\begin{array}{l}
3 x-4 y=11 \\
-3 x+2 y=-7
\end{array}\right.
$$

- Example: Solve a System with Elimination

$$
\left\{\begin{array}{l}
3 x+2 y=48 \\
9 x-8 y=-24
\end{array}\right.
$$

V Solving a System of two equations with Infinite Solutions

$$
\left\{\begin{array}{l}
y=3 x-2 \\
15 x-5 y=10
\end{array}\right.
$$

Solving an Inconsistent System

$$
\left\{\begin{array}{l}
4 x+6 y=12 \\
6 x+9 y=12
\end{array}\right.
$$

Application of Systems of Equations
Together, teammates Tommy and Jay got 2682 base hits last season. Tommy had 276 more hits than Jay. How many hits did each player have?

