7.4 The Hyperbola

- Geometric Definition of a Hyperbola

A hyperbola is a collection of all points in the plane, the difference of whose distances from two fixed points called the foci is a constant.

マ Vocabulary of a Hyperbola

V Important Components of the Equations
a : distance from center to vertex
c : distance from center to focus
b : helps define slope of the asymptotes

Related by Pythagorean theorem

Labeling the Ordered Pairs and Equations

When you know the center, a, b, and c you can find all of the significant features of the hyperbola

Equations of a hyperbola with center at the origin $(0,0)$.

Horizontal Traverse Axis $(y=0)$

$$
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1
$$

Asymptotes: $y= \pm \frac{b}{a} x$

$$
a^{2}+b^{2}=c^{2}
$$

Vertical Traverse Axis $(x=0)$
$\frac{y^{2}}{a^{2}}-\frac{x^{2}}{b^{2}}=1$
Asymptotes: $y= \pm \frac{a}{b} x$
$a^{2}+b^{2}=c^{2}$

V Equations of a hyperbola with center at (h, k).

Horizontal Traverse Axis $(y=k)$

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1
$$

Asym: $y-k= \pm \frac{b}{a}(x-h)$
$a^{2}+b^{2}=c^{2}$
Vertical Traverse Axis $(x=h)$
$\frac{(y-k)^{2}}{a^{2}}+\frac{(x-h)^{2}}{b^{2}}=1$
Asym: $y-k= \pm \frac{a}{b}(x-h)$
$a^{2}+b^{2}=c^{2}$

- Examples: Given the graph find the features and equation

V Example 1:

Find the equation of the hyperbola, the center, vertices, foci, traverse axis, asymptotes

- Example 2:

Find the equation of the hyperbola, the center, vertices, foci, traverse axis, asymptotes

$\boldsymbol{\nabla}$ Examples: Given the features find the equation and the graph

V Example 1:

Find the orientation, center, vertices, foci, and write the equation of the hyperbola.

The foci is $(0, \pm 2)$ and the length of the major axis is 8 .

V Example 2:

Find the orientation, center, vertices, and write the equation of the hyperbola.

The center is at $(2,1)$; One vertex is at $(7,1)$; One focus is at $(-1,1)$.

$\boldsymbol{\nabla}$ Examples: Given the equations find the features and graph

- Example 1:

Find the orientation, center, vertices, and graph of the hyperbola.

$$
\frac{(x-3)^{2}}{16}+\frac{(y+4)^{2}}{79}=1
$$

V Example 2:

Rewrite using completing the square.
Find the orientation, center, vertices, and graph of the hyperbola.

$$
x^{2}-2 x+16 y^{2}+32 y+1=0
$$

