6.8 Exponential Growth and Decay Models

- Population Growth or Decay
P_{0}-initial population (starting population or population at $\mathrm{t}=0$)

$$
P(t)=P_{0} e^{k t}
$$

k-growth or decay rate
t-time (any unit of time but be consistent)
P-Population after time
V Example: Insect Population
The size P of a certain insect population at time (in days) obeys the function $P(t)=300 e^{0.05 t}$

Determine the number of insects at $t=0$ days.
What is the growth rate of the insect population?
What is the population after 10 days?

When will the insect population double?

V Example: Population Growth

The population of a city follows the exponential law. If the population doubled in size over 13 months and the current population is 1,234 , what will the population be in 5 years from now?

Law of Uninhibited Growth or Decay
A_{0}-initial amount

$$
A(t)=A_{0} e^{k t}
$$

k-growth or decay rate
t-time
A-Accrued amount

V Example: Half-Life
The chemical element has a half-life of approximately 4 days. If 236 grams are present now, how much will be present in 60 days?

V Example: Half-Life
The amount of caffeine in the human body has a half life of 4.9 hours to 6 hours depending on the person. Assuming the caffeine half life for a particular person is 5.5 hours find the decay rate of caffeine and build an exponential model for the decay rate. Find the amount of caffeine left in the body 2 hours after drinking a can of monster energy drink which contains 86 milligrams of caffeine. Round your answer to three decimal places.

Logistic Model
b - growth rate
c-carrying capacity

$$
P(t)=\frac{c}{1+a e^{-b t}}
$$

P-population
t-time

- Example: Logistic Model

For the logistic growth model $P(t)=\frac{1000}{1+30.94 e^{-0.369 t}}$
a) What is the carrying capacity?
b) What is the growth rage of the bacteria?
c) Determine the initial population.
d) What is the population after 6 hours?
e) When will the population be 900 g ?
f) How long does it take for the population to reach half of the carrying capacity?

