6.6A Exponential Equations

- ▼ Solving Exponential Equations
 - ▼ Method: Relating the Bases or One-to-One Property
 - ▼ Method of Relating the Bases in Symbols and Words
 - 1. Write the equation in a form where the bases are the same on both sides. $[b^u = b^v]$
 - 2. Use the one-to-one property which states if the bases are the same then the exponents are equal. [u=v]
 - ▼ Examples of Solving Exponential Equations by Relating the Bases

$$lacktriangle$$
 Example 1: $4^{2x+1}=8^x$

▼ Example 2:
$$e^{-x^2} = (e^x)^2 \cdot \frac{1}{e^3}$$

▼ Example 3:
$$3^{7x} = 9^{2x-5}$$

$$lacktriangle$$
 Example 4: $3^{5x} \cdot 9^{x^2} = 27$

$$lacktriangle$$
 Example 5: $5^x-2=23$ $lacktriangle$ Example 6: $3^{x+1}=9^{5x}$

$$lacktriangle$$
 Example 6: $3^{x+1}=9^{5x}$

$$lacktriangle$$
 Example 7: $7^{x^2+3x}=rac{1}{49}$

$$ullet$$
 Example 8: $9^{x^2}=3^{-5x-2}$

$$lacktriangle$$
 Example 9: $5^{2x^2+3x}=25^{6-x}$

$$lacktriangle$$
 Example 9: $5^{2x^2+3x}=25^{6-x}$ $lacktriangle$ Example 10: $\left(e^{-x}
ight)^2=rac{e^x}{e^2}$

- ▼ Method: Convert to Logarithmic Equation
 - ▼ Method of Converting to a Logarithm in Symbols and Words
 - 1. Recognize an exponential equation. $y = b^x$
 - 2. Rewrite the exponential equation as a logarithmic equation using the following equivalence. $[\log_b y = x]$
 - 3. Solve the remaining equation to find solutions.
 - ▼ Examples of Solving Exponential Equations

$$lacktriangle$$
 Example 1: $2^x = 5$

$$lacktriangle$$
 Example 2: $8 \cdot 3^x = 5$

$$lacktriangle$$
 Example 3: $5^{x-2}=3^{3x+2}$

$$ightharpoonup$$
 Example 4: $3^x = 8$

$$lacktriangle$$
 Example 5: $10^x=1500$

▼ Example 6:
$$5^{x-3} = 137$$

▼ Example: 7:
$$7^{2x+1} = 3^{x+5}$$

▼ Example 8:

$$500e^{3x} + 40 = 1040$$

 $y = b^x$

 $\ln y = \ln b^x$ $\ln y = x \ln b$

 $\frac{\ln y}{\ln b} = \frac{x \ln b}{\ln b}$ $\frac{\ln y}{\ln b} = x$

▼ Method: Take the Log of Both Sides

- ▼ Method of Take the Log of Both Sides in Symbols and Words
 - 1. Recognize an exponential equation.
 - 2. Use the one-to-one property for logarithms and take the natural log of both sides.
 - Use the power rule for logarithms which allows you to move the power inside the logarithm to become the coefficient of the logarithm.
 - 4. Solve for the variable by dividing.
- ▼ Examples of Solving Exponential Equations

$$lacktriangle$$
 Example 1: $2^x=5$

$$lacktriangle$$
 Example 2: $8\cdot 3^x=5$

$$lacktriangle$$
 Example 3: $5^{x-2}=3^{3x+2}$

$$lacktriangle$$
 Example 4: $3^x=8$

$$lacktriangle$$
 Example 5: $10^x=1500$

▼ Example 6:
$$5^{x-3} = 137$$

▼ Example: 7:
$$7^{2x+1} = 3^{x+5}$$

$$500e^{3x} + 40 = 1040$$

- ▼ Method: Quadratic in Form or u-substitution
 - ▼ Method of Quadratic in Form in Symbols and Words
 - 1. Recognize an equation is quadratic in form $[a \cdot w^{2x} + b \cdot w^x + c = 0]$
 - 2. The substitution $u=w^x$ turns the equation into a quadratic equation. $\left[au^2+bu+c=0\right]$
 - 3. Solve the quadratic equation by factoring, the square root method, completing the square or the quadratic formula. $[u=l \ {\rm or} \ u=m]$

- 4. Return to the original variable using the same substitution as before. $[w^x=l \ {\rm or} \ w^x=m]$
- 5. Solve the remaining exponential equation.
- ▼ Examples of Solving Exponential Equations by u-substitution
 - lacktriangle Example 1: $e^{2x}-2e^x-3=0$

lacktriangle Example 2: $4^x-2^x-12=0$