6.2B Inverse Functions

- Definition of Inverse Function

Let f be a one-to-one function with domain A and range B . Then f^{-1} is the inverse of f with domain B and range A . Furthermore, if $f(a)=b$ then $f^{-1}(b)=$ a.
$\boldsymbol{\nabla}$ Find the inverse from a set of ordered pairs, find the domain and range, determine if each set of ordered pairs is a one-to-one function.

- Example 1: $\{(1,10),(2,10),(3,10)\}$
- Example 2: $\{(2,3),(1,9),(-2,8),(5,2)\}$

V Example 3: $\{(-2,3),(5,6),(-2,1),(3,8)\}$

V Example Takeaways

- Switch the x and y to find the inverse
- The inverse is a function only when the original function is one-to-one
- The domain of f is the range of f^{-1}
- The range of f is the domain of f^{-1}

Verify the Functions are Inverse Functions

- Cancellation Properties of Inverse Functions

$$
\begin{aligned}
& \left(f \circ f^{-1}\right)(x)=x \\
& \left(f^{-1} \circ f\right)(x)=x
\end{aligned}
$$

Note: This property is true for every x using the definition of an inverse function. From the definition of an inverse function $f(a)=b$ then $f^{-1}(b)=a$.
$\left(f^{-1} \circ f\right)(a)=f^{-1}(f(a))=f^{-1}(b)=a$ and $\left(f \circ f^{-1}\right)(b)=$
$f\left(f^{-1}(b)\right)=f(a)=b$
∇ Determine whether f and g are inverse functions by evaluating $(f \circ g)(x)$ and $(g \circ f)(x)$.

マ Example 1: $f(x)=\frac{3}{2} x-7$ and $g(x)=\frac{2 x-14}{3}$
$\boldsymbol{\nabla}$ Example 2: $f(x)=\frac{5-x}{x}$ and $g(x)=\frac{5}{x+1}$

Find the Inverse from an Equation
$\boldsymbol{\nabla}$ Process of finding inverses from an equation

1. Change $f(x)$ to y.
2. Switch the x and y.
3. Solve for y.

Find the inverse of the function. Verify the functions are inverses by calculating $f \circ$ f^{-1} and $f^{-1} \circ f$. Find the domain and range of the function and it's inverse.

- Example 1: $f(x)=2 x-6$
- Example 2: $g(x)=x^{3}+1$

V Example 3: $h(x)=\frac{5}{x}+4$

V Example 4: $r(x)=-x^{2}+6, x \geq 0$

Answer questions about the f^{-1} using the graph of f
a) What is the domain of f^{-1} ?

b) What is the range of f^{-1} ?
c) What is the y-intercept of f^{-1} ?
d) Evaluate $f^{-1}(0)$.
e) Evaluate $f^{-1}(-5)$.
f) Evaluate $f^{-1}(6)$.
g) Evaluate $f^{-1}(1)$.

A function and it's inverse are symmetric around the line $y=x$.

∇ Use the graph of f to sketch a graph of f^{-1}.

