5.3 Complex Zeros; Fundamental Theorem of Algebra

- Definition: Complex Variable

A variable in the complex number system is referred to as a complex variable.
v Definition: Complex Polynomial
A complex polynomial function f of degree n is a function of the form

$$
f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}
$$

where the coefficients are complex numbers, n is a non negative integer, and x is a complex variable.

- Definition: Complex Zero

A complex number r is called a complex zero of f if $f(r)=0$.
$\boldsymbol{\nabla}$ The Fundamental Theorem of Algebra

- Every complex polynomial function f with degree greater than or equal to 1 has at least 1 complex zero.
- That is, every complex polynomial function of degree n greater than or equal to 1 has exactly n complex zeros, some of which may repeat.
- The Conjugate Pairs Theorem

Let $f(x)$ be a polynomial function whose coefficients are real numbers. If $r=$ $a+b i$ is a zero of f, the complex conjugate $a-b i$ is also a zero of f.
∇ Example: Let f be a polynomial function of degree 5 with real coefficients. f has known zeros of $1,5 i$, and $1+i$.
a) Find the remaining zeros with the conjugate pair theorem and the fundamental theorem of algebra
b) Write the equation in expanded form.

V Example: $h(x)=6 x^{5}+6 x^{4}+66 x^{3}+66 x^{2}-480 x-480$
Given that $-4 i$ is a zero of the function, find the remaining zeros of the function.
∇ Example: $f(x)=3 x^{4}+5 x^{3}+25 x^{2}+45 x-18$
a) Find the zeros of the complex polynomial.
b) Write the complex polynomial in factored form.

