5.2 The Real Zeros of a Polynomial Function

マ Remainder Theorem
Let f be a polynomial function. If $f(x)$ is divided by $x-c$, then the remainder is $f(c)$.
\checkmark Refresher Example: Find the reminder when $f(x)=x^{3}-4 x^{2}-5$ is dividing by $x-3$ with long division.
∇ Refresher Example: Find the reminder when $f(x)=x^{3}-4 x^{2}-5$ is dividing by $x+2$ with synthetic division

- Example: Find the reminder when $f(x)=x^{3}-4 x^{2}-5$ is dividing by $x-3$ with the remainder theorem
- Example: Find the reminder when $f(x)=x^{3}-4 x^{2}-5$ is dividing by $x+2$ with the remainder theorem

- Factor Theorem

Let f be a polynomial function, then $x-c$ is a factor of f if and only if $f(c)=0$.

1) If $f(c)=0$ then $x-c$ is a factor of f.
2) If $x-c$ is a factor of f then $f(c)=0$.

V Example: Use the factor theorem and remainder theorem to determine whether the function $f(x)=2 x^{3}-x^{2}+2 x-3$ has a factor of $x-1$. If $x-1$ is a factor, write the polynomial in factored form.

V Example: Use the factor theorem and remainder theorem to determine whether the function $f(x)=2 x^{3}-x^{2}+2 x-3$ has a factor of $x+2$. If $x+2$ is a factor, write the polynomial in factored form.

- Theorem: Number of Real Zeros

A polynomial function cannot have more real zeros than its degree.

- Rational Zeros Theorem

Let f be a polynomial function of degree 1 or higher of the form

$$
f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}
$$

where each coefficient is an integer, and $a_{n} \neq 0$. If $\frac{p}{q}$ is in lowest terms and is a rational zero of f, then p must be a factor of a_{0} and q must be a factor of a_{n}.

V Example: For the function $f(x)=2 x^{3}+11 x^{2}-7 x-6$, use the rational zeros theorem to list the potential zeros.
∇ Example: Find the zeros of $f(x)=2 x^{3}+11 x^{2}-7 x-6$.

V Example: Write the function $f(x)=2 x^{3}+11 x^{2}-7 x-6$ in factored form.

- Definition: Irreducible

In general, a quadratic factor is irreducible if it cannot be factored over the real numbers, that is, it is prime over the real numbers.
Examples: $x^{2}+1 ; x^{2}-6 x+13$
V Theorem: Factoring Polynomials
Every polynomial function (with real coefficients) can be uniquely factored into a product of linear factors and/or irreducible quadratic factors.

V Corollary: At least One Real Zero
A polynomial function (with real coefficients) of odd degree has at least one real zero.

V Intermediate Value Theorem
Let f denote a continuous function. If
$a<b$ and if $f(a)$ and $f(b)$ are of opposite signs, then f has at least one zero between a and b.

V Example: Use the Intermediate Value Theorem to show that $f(x)=3 x^{3}-$ $10 x+9$ has a zero in the interval $[-3,-2]$. Approximate the zero correct to two decimal places.

