3.6 Mathematical Models: Building Models

\checkmark Smallest Distance

Let $P=(x, y)$ be a point on the graph of $y=x^{2}-10$
a) Express the distance d from P to the origin as a function of x.
b) What is the distance if $x=0$?
c) What is the distance if $x=3$?
d) Use a graphing utility to graph $d=d(x)$.
e) For what values of x is d the smallest?

Largest Area

A rectangle has one corner on quadrant 1 on the graph of $y=25-x^{2}$, another at the origin, a third on the positive y-axis, and a fourth on the positive x-axis.

a) Express the area of the rectangle as a function of x.
b) What is the domain of A ?
c) Use a graphing utility to graph $A=$ $A(x)$.
d) For what value of x is A largest?

Modeling Perimeter and Area
A wire of length x is bent into the shape of a square.
a) Express the perimeter P of the square as a function of x.
b) Express the area A of the square as a function of x.

Smallest Distance

Two cars are approaching an intersection. One is 3 miles west of the intersection and is moving at a constant speed of 35 miles per hour. At the same time, the other car is 4 miles north of the intersection and is moving at a constant speed of 40 miles per hour.
a) Build a model that expresses the distance d between the cars as a function if time.
b) Use a graphing utility to graph $d=d(x)$. For what value of t is d the smallest.

- Modeling Time

An island is 3 miles to the nearest point P on a straight shoreline. A town is 9 miles down the shore from P.

a) If a person can row a boat at an average speed of 2 miles per hour and the same person can walk 4 miles per hour, build a model that expresses the time T that it takes to go from the island to the two as a function of the distance, x from P to where the person lands the boat.
b) What is the domain of T ?
c) How long will it take to travel from the island to the town if the person land the boat 2 miles from P ?
d) How long will it take if the person lands the boat 6 miles from P ?

Largest Volume

An open box with a square base is to be made from a piece of cardboard 32 inches on a side by cutting out a square from each corner and turning up the sides.
a) Express the volume V of a box as a function of the length x of the side of the square cut from each corner.
b) What is the volume if a 2-inch square is cut out?
c) What is the volume if a 8 -inch square is cut out?
d) Graph $V=V(x)$. For what value of x is V the largest?

