(-7.6.0)

3.3 Properties of Functions

- ▼ Increasing, Decreasing, Constant
 - Definition of Increasing

A function f is **increasing** on an interval I if, for any choice of x_1 and x_2 in I, with $x_1 < x_2$, we have $f(x_1) < f(x_2)$. (The graph of an increasing function always goes "up" from left to right.)

Definition of Decreasing

A function f is **decreasing** on an interval I if, for any choice of x_1 and x_2 in I with $x_1 < x_2$, we have $f(x_1) > f(x_2)$. (The graph of an decreasing function always goes "down" from left to right.)

Definition of Constant

(-3,3)

(-1,2)

(0, -4)

(-3,2)~

A function f is constant on an interval I if, for all choices of x in I, the values of f(x) are equal. (The graph of an constant function always stays the same from left to right.)

 \checkmark Find the Intervals of Increasing, Decreasing and Constant

(3.11, 2.05)

00

(0.2,-4.13)

Identify intervals of increasing

Identify intervals of decreasing

- ▼ Local Minimum or Local Maximum
 - Definition of Local Maximum

Let f be a function defined on some interval I. A function f has a **local maximum** at c if there is an open interval in I containing c so that, for all x in this open interval, we have $f(x) \leq$ f(c). We call f(c) a local maximum value of f.

Definition of Local Minimum

Let f be a function defined on some interval I. A function f has a **local minimum** at c if there is an open interval in I containing c so that, for all x in this open interval, we have $f(x) \ge$ f(c). We call f(c) a local minimum value of f.

▼ Find the Local Minimum and Local Maximum

Identify any local minimums and where it occurs

Identify any local maximums and where it occurs

▼ Absolute Minimum or Local Maximum

domain: [a, b]for all x in [a, b], $f(x) \le f(u)$ for all x in [a, b], $f(x) \ge f(v)$ absolute maximum: f(u)absolute minimum: f(v)

Definition of Absolute Maximum

Let f be a function defined on some interval I. If there is a number u in I for which $f(x) \leq f(u)$ for all x in I, then f has an absolute maximum at u, and the number f(u) is the absolute maximum of f on I.

Definition of Absolute Minimum

Let f be a function defined on some interval I. If there is a number v in I for which $f(x) \ge f(v)$ for all x in I, then f has an absolute minimum at v, and the number f(v) is the absolute minimum of fon I.

Find the Absolute Min or Max if it Exists

Continuous function

A precise definition requires calculus. A working definition is that a continuous functions is one whose graph has no gaps or holes and can be traced without lifting a pencil from the paper.

Extreme Value Theorem

If f is a continuous function whose domain is a closed interval [a, b], then f has an absolute maximum and an absolute minimum on [a, b].

▼ Average Rate of Change

If a and b, $a \neq b$, are in the domain of a function y = f(x), the average rate of change of f from a to b is defined as

Average rate of change $= rac{\Delta y}{\Delta x} = rac{f(b) - f(a)}{b - a} \;\; a
eq b$

- ▼ Find the Average Rate of Change.
 - ▼ Example 1

Find the average rate of change for $f(x)=x^2-9$ from 1 to 3.

Find the average rate of change for $f(x)=x^2-9$ from 1 to 2.

▼ Example 2

Find the average rate of change for \sqrt{x} from 1 to 4.

Secant Line

Using two points on of the function f you can form a secant line. The slope of the secant line is

$$m_{sec}=rac{f(b)-f(a)}{b-a}=rac{f(a+h)-f(a)}{h}$$

Using the Secant Line to Approximate the tangent line leads to Calculus

▼ Example 1: $f(x) = 2x^2 - 3x + 4$

a) Express the slope of the secant line in terms of x and h.

b) Find the slope of the secant line for h=0.5, 0.1, 0.001 at x=1

c) What value does the slope of the secant line approach as h approaches 0?

d) Find the equation of the secant line at x = 1 and h = 0.01,

e) Graph f and the secant line in the same viewing window.

▼ Example 2: $f(x) = \frac{9}{x}$

a) Express the slope of the secant line in terms of x and h.

b) Find the slope of the secant line for $h=rac{1}{2},rac{1}{10},rac{1}{100}$ at x=1

c) What value does the slope of the secant line approach as h approaches 0?

d) Find the equation of the secant line at x=1 and $h=rac{1}{100}$,

e) Graph f and the secant line in the same viewing window.