3.3 Properties of Functions

マ Increasing, Decreasing, Constant
V Definition of Increasing
A function f is increasing on an interval I if, for any choice of x_{1} and x_{2} in I, with $x_{1}<x_{2}$, we have $f\left(x_{1}\right)<f\left(x_{2}\right)$. (The graph of an increasing function always goes "up" from left to right.)

- Definition of Decreasing

A function f is decreasing on an interval I if, for any choice of x_{1} and x_{2} in I with $x_{1}<x_{2}$, we have $f\left(x_{1}\right)>f\left(x_{2}\right)$. (The graph of an decreasing function always goes "down" from left to right.)

- Definition of Constant

A function f is constant on an interval I if, for all choices of x in I, the values of $f(x)$ are equal. (The graph of an constant function always stays the same from left to right.)

Local Minimum or Local Maximum

- Definition of Local Maximum

Let f be a function defined on some interval I. A function f has a local maximum at c if there is an open interval in I containing c so that, for all x in this open interval, we have $f(x) \leq$ $f(c)$. We call $f(c)$ a local maximum value of
 f.
∇ Definition of Local Minimum

Let f be a function defined on some interval I. A function f has a local minimum at c if there is an open interval in I containing c so that, for all x in this open interval, we have $f(x) \geq$ $f(c)$. We call $f(c)$ a local minimum value of f.

$\boldsymbol{\nabla}$ Find the Local Minimum and Local Maximum

Identify any local minimums and where it occurs

Identify any local maximums and where it occurs

Absolute Minimum or Local Maximum

- Definition of Absolute Maximum

domain: $[a, b]$
for all x in $[a, b], f(x) \leq f(u)$
for all x in $[a, b], f(x) \geq f(v)$ absolute maximum: $f(u)$ absolute minimum: $f(v)$ Let f be a function defined on some interval I. If there is a number u in I for which $f(x) \leq f(u)$ for all x in I, then f has an absolute maximum at u, and the number $f(u)$ is the absolute maximum of f on I.

V Definition of Absolute Minimum

Let f be a function defined on some interval I. If there is a number v in I for which $f(x) \geq f(v)$ for all x in I, then f has an absolute minimum at v, and the number $f(v)$ is the absolute minimum of f on I.

च Find the Absolute Min or Max if it Exists

- Continuous function

A precise definition requires calculus. A working definition is that a continuous functions is one whose graph has no gaps or holes and can be traced without lifting a pencil from the paper.

v Extreme Value Theorem

If f is a continuous function whose domain is a closed interval $[a, b]$, then f has an absolute maximum and an absolute minimum on $[a, b]$.

Average Rate of Change

If a and $b, a \neq b$, are in the domain of a function $y=f(x)$, the average rate of change of f from a to b is defined as

Average rate of change $=\frac{\Delta y}{\Delta x}=\frac{f(b)-f(a)}{b-a} a \neq b$
v Find the Average Rate of Change.

- Example 1

Find the average rate of change for $f(x)=x^{2}-9$ from 1 to 3 .

Find the average rate of change for $f(x)=x^{2}-9$ from 1 to 2 .

- Example 2

Find the average rate of change for \sqrt{x} from 1 to 4.

Secant Line

Using two points on of the function f you can form a secant line. The slope of the secant line is

$$
m_{s e c}=\frac{f(b)-f(a)}{b-a}=\frac{f(a+h)-f(a)}{h}
$$

Using the Secant Line to Approximate the tangent line leads to Calculus

V Example 1: $f(x)=2 x^{2}-3 x+4$
a) Express the slope of the secant line in terms of x and h.
b) Find the slope of the secant line for $h=0.5,0.1,0.001$ at $x=1$
c) What value does the slope of the secant line approach as h approaches 0 ?
d) Find the equation of the secant line at $x=1$ and $h=0.01$,
e) Graph f and the secant line in the same viewing window.

V Example 2: $f(x)=\frac{9}{x}$
a) Express the slope of the secant line in terms of x and h.
b) Find the slope of the secant line for $h=\frac{1}{2}, \frac{1}{10}, \frac{1}{100}$ at $x=1$
c) What value does the slope of the secant line approach as h approaches 0 ?
d) Find the equation of the secant line at $x=1$ and $h=\frac{1}{100}$,
e) Graph f and the secant line in the same viewing window.

