Find the domain for the following functions in interval notation.

a. $f(x) = 2x^2 - 4x + 5$; b. $g(x) = \sqrt{3-x}$; c. $h(x) = \sqrt[3]{x-7}$; d. $R(x) = \frac{x-3}{x^2-9}$

If the domain of f(x) is $\left(\frac{2-\sqrt{14}}{2}, \frac{2+\sqrt{14}}{2}\right)$, go to Station #3.

If the domain of g(x) is $[3, \infty)$, go to Station #9.

If the domain of h(x) is $[7, \infty)$, go to Station #6.

If the domain of R(x) is $(-\infty, -3) \cup (-3,3) \cup (3, \infty)$, go to Station #5.

Station #2

Graph the following function using transformations.

Station #3

Use $f(x) = x^2 - 4$ to answer the following.

- a. Determine f(-1).
- b. Find all x for which f(x) = 2.
- c. Determine if f(x) is even, odd, or neither.
- d. Find the x-intercepts and y-intercepts of *f*.

If f(-1) = -5, go to Station #15.

If $x = \sqrt{6}$ is all of the solutions to f(x) = 2, go to Station #14.

If *f* is odd, go to Station #6.

If the x-intercepts of f are (2,0) and (-2,0) and the y intercept of f is (0, -4), go to Station #11.

Use the graph below to answer the following.

If the graph has y-axis symmetry, go to Station #9.

If the graph represents a one-to-one function, go to Station #10.

If the relative maximum is -446 at x=-1.4, go to Station #8.

If the y-intercept is (0, -288), go to Station #6.

Station #5

Use the graph of y = f(x) to answer the following.

- a. Determine if the graph has x-axis symmetry, y-axis symmetry, origin symmetry or no symmetry.
- b. Determine if the graph represents a function and is a one-to-one function.
- c. Determine any relative maximums.
- d. Determine the y-intercept.

- a. Determine *f*(2).
- b. Find all x for which g(x) = 2.
- c. Determine $\left(\frac{f}{g}\right)(0)$.
- d. Determine (fog)(-3).

Use $f(x) = x^2 + 5x - 9$ and g(x) = 3x - 2 to answer the following.

a. Evaluate (fg)(1).

- b. Determine (f g)(x).
- c. Evaluate (gof)(2).
- d. Determine (fog)(x).

If (fg)(1) = 3, go to Station #10. If $(f - g)(x) = x^2 + 2x - 11$, go to Station #8. If (gof)(2) = 25, go to Station #2. If $(fog)(x) = 9x^2 + 3x - 15$, go to Station #9.

Station #7

Let $f(x) = x^3 - 4$. Which of the following is a formula for $f^{-1}(x)$.

If $f^{-1}(x) = x^3 - 4$, go to Station #11 If $f^{-1}(x) = x^3 + 4$, go to Station #15 If $f^{-1}(x) = \sqrt[3]{x+4}$, go to Station #3 If f doesn't have an inverse, go to Station #14

Station #8

Use the graph of y = f(x) to answer the following.

If f(-2) = -4, go to Station #7.

If f(x) = -4 for all x on the interval [0,2), go to Station #2.

If the intervals of increasing are (-1,1) and $(2,\infty)$, go to Station #3.

If the range of f is $(0, \infty)$, go to Station #11.

- a. Determine f(-2).
- b. Find all x for which f(x) = -4.
- c. Determine the intervals of increasing for *f*.
- d. Determine the range of the function *f*.

Determine the domain and range of the function.

If the domain is [-2,4), go to Station #8.

If the domain is $(-\infty, 4)$, go to Station #10.

If the range is $(-\infty, 3)$, go to Station #2.

If the range is $(-\infty, 4)$, go to Station #7.

Station #10

Determine the *x*- and *y*-intercepts for the given function.

 $g(x) = -\sqrt{x} + 3$

If (-9,0) and (0,3), go to Station #2.

If (3,0) and (0,-9), go to Station #3.

If (3,0) and (0,9), go to Station #7.

If (9,0) and (0,3), go to Station #8.

Station #11

Use $f(x) = -2(x + 3)^2 + 8$ to answer the following.

- e. Find the vertex for the function *f*.
- f. Determine if the parabola is facing up or down and the axis of symmetry.
- g. Find the intercepts of the function.
- h. Determine the domain and range of the function

If the vertex is (3,8), go to Station #12.

If the parabola is facing down and the axis of symmetry is x = 3, go to Station #13.

If the x-intercepts are (-5,0) and (-1,0) and the y-intercept is (0,-10), go to Station #14.

If the domain is $(-\infty,\infty)$ and the range is $[8,\infty)$, go to Station #1.

Use $f(x) = 3x^2 - 12x + 3$ to answer the following.

- a. Find the vertex for the function *f*.
- b. Determine if the parabola is facing up or down and the axis of symmetry.
- c. Find the intercepts of the function.
- d. Determine the domain and range of the function

If the vertex is (12, 3), go to Station #1.

If the parabola is facing up and the axis of symmetry is x = 12, go to Station #5.

If the x-intercepts are (3,0) and (1,0) and the y-intercept is (0,3), go to Station #4.

If the domain is $(-\infty, \infty)$ and the range is $[-9, \infty)$, go to Station #13.

Station #13

Use the graph to answer the following questions.

- a. Determine the vertex of the parabola.
- b. Determine the leading coefficient, a.
- c. Write the equation of the parabola in standard form.
- d. Write the equation of the parabola in general form.

If the vertex of the parabola is (1, -6), go to Station #5.

If the leading coefficient, a is 2, go to Station #6.

If the standard form of the parabola is $f(x) = 3x^2 - 12x + 3$, go to Station #4.

If the general form of the parabola is $f(x) = 3x^2 - 12x + 3$, go to Station #1.

Station #14

A person standing close to the edge on top of an 80-foot building. The person throws the ball vertically upward with a velocity of 64 feet per second. The quadratic function below models the ball's height above the ground, s(t), in feet, t seconds after it was thrown.

-7 -6 -5 -4 -3 -2 -1

(1.-6)

$$s(t) = -16t^2 + 64t + 80$$

After how many seconds does the ball reach its maximum height?

What is the maximum height of the ball?

If the ball reaches its maximum height at 4 seconds, go to Station #1.

If the ball reaches its maximum height at 2 seconds, go to Station #12.

If the balls maximum height is 2 feet, go to Station #5.

If the balls maximum height is 80 feet, go to Station #13.

Answers:

Station 1	a. The domain of $f(x)$ is $(-\infty, \infty)$. b. The domain of $g(x)$ is $(-\infty, 3]$.
	c. The domain of $h(x)$ is $(-\infty, \infty)$. d. The domain of $R(x)$ is $(-\infty, -3) \cup (-3,3) \cup (3,\infty)$
Station 5	a. $f(2) = 3$ b. $x = -3$ for $g(x) = 2$.
	c. $\left(\frac{f}{g}\right)(0) = \frac{1}{4}$ d. $(fog)(-3) = 3$
Station 4	a. The graph has no symmetry.
	b. The graph represents a function but is not one-to-one.
	c. The graph has a relative maximum of 721 at x=-7.1 and a relative maximum of 1550 at x=5.5.
	d. The y-intercept is $(0, -288)$
Station 6	a. $(fg)(1)=-3$ b. $(f-g)(x) = x^2 + 2x - 7$
	c. $(gof)(2) = 13$ d. $(fog)(x) = 9x^2 + 3x - 15$
Station 9	D: $(-\infty, 4)$ R: $(-\infty, 4]$
Station 10	(9,0) and (0,3)
Station 8	a. $f(-2) = 1$ b. $f(x) = -4$ for all x on the interval [0,2)
	c. The intervals of increasing are $(-1,0)$ and $(2,\infty)$. d. The range is $\{-4\} \cup [0,\infty)$
Station 2	
Station 7	$f^{-1}(x) = \sqrt[3]{x+4}$
Station 3	a. $f(-1) = -3$ b. $x = \pm \sqrt{6}$
	c. Even d. x-intercepts: (2,0), (-2,0); y-intercept: (0, -4)
Station 11	a. The vertex is $(-3,8)$.
	b. The parabola opens down and the axis of symmetry is $x=-3$.
	c. The x-intercepts are $(-5,0)$ and $(-1,0)$. The y-intercept is $(0, -10)$.
	d. The domain is $(-\infty,\infty)$ and the range is $(-\infty,8]$.
Station 14	The ball reaches its maximum height at $t = 2$ seconds. The maximum height is 144 feet.
Station 12	a. The vertex is $(2, -9)$.
	b. The parabola opens up and the axis of symmetry is x=2.
	c. The x-intercepts are $(2 - \sqrt{3}, 0)$ and $(2 + \sqrt{3}, 0)$. The y-intercept is $(0,3)$.
	d. The domain is $(-\infty,\infty)$ and the range is $[-9,\infty)$.
Station 13	a. The vertex is $(2, -9)$.
	b. a=3.
	c. The standard form of the parabola is $f(x) = 3(x-2)^2 - 9$
	d. The general form of the parabola is $f(x) = 3x^2 - 12x + 3$