Section 5.5 Guided Notebook

Section 5.5 Applications of Exponential and Logarithmic Functions

$\square \quad$ Work through Objective 1
$\square \quad$ Work through Objective 2

Section 5.5 Applications of Exponential and Logarithmic Equations

Section 5.5 Objective 1 Solving Compound Interest Applications
Complete the two compound interest formulas seen here:

Compound Interest Formulas
 Periodic Compound Interest Formula

$$
A=
$$

\qquad

Continuous Compound Interest Formula

$$
A=
$$

\qquad
where
$A=$ Total amount after t years
$P=$ Principal (original investment)
$r=$ Interest rate per year
$n=$ Number of times interest is compounded per year
$t=$ Number of years

Section 5.5

Work through the video that accompanies Example 1 and take notes here:
How long will it take (in years and months) for an investment to double if it earns 7.5\% compounded monthly?

Work through the video that accompanies Example 2 and take notes here:
Suppose an investment of $\$ 5,000$ compounded continuously grew to an amount of $\$ 5,130.50$ in 6 months. Find the interest rate, and then determine how long it will take for the investment to grow to $\$ 6,000$. Round the interest rate to the nearest hundredth of a percent and the time to the nearest hundredth of a year.

Section 5.5 Objective 2 Exponential Growth and Decay

Exponential Growth: When a population grows at a rate proportional to the size of the current population, the following exponential growth function is used. $P(t)=P_{0} e^{k t}$ where $k>0$ and P_{0} (sometimes called "P-not") is the initial population. The graph of this exponential growth function is seen below. Note that k is a constant called the relative growth rate.

Work through the video that accompanies Example 3:
The population of a small town grows at a rate proportional to its current size. In 1900, the population was 900 . In 1920, the population had grown to 1,600 . What was the population of this town in 1950? Round to the nearest whole number.

Section 5.5

Exponential Decay

A model that describes the exponential decay of a population, quantity, or amount A, after a certain time, t, is $A(t)=A_{0} e^{k t}$ where $k<0$ and A_{0} (sometimes called "A-not") is the initial quantity. The graph of this exponential decay function is seen below.

Graph of $A(t)=A_{0} e^{k t}$ for $k<0$

One very useful application of the exponential decay model is half-life.

Work through the animation that describes half-life.

Define half-life:

What is the half-life of Cesium-137?

On the graph on the previous page, insert the relevant time values and corresponding A values as seen in this animation. How much Cesium-137 would be left after 120 years? 150 years?

Work through the video that accompanies Example 4:
Suppose that a meteorite is found containing 4% of its original krypton-99. If the half-life of krypton-99 is 80 years, how old is the meteorite? Round to the nearest year.

