Section 3.1 Guided Notebook

Section 3.1 Relations and Functions

- \Box Work through Objective 1
- \Box Work through Objective 2
- □ Work through Objective 3
- □ Work through Objective 4
- □ Work through Objective 5
- \Box Work through Objective 6

Section 3.1 Relations and Functions

Section 3.1 Objective 1 Understanding the Definitions of Relations and Functions

Watch the video that accompanies the definition of a relation and take notes here:

Write down the definition of a **relation.**

Write an example of a relation as seen in the video and state the domain and range of the relation.

Write down the definition of a **function.**

Read through the text preceding Example 1 to further clarify functions and relations and take notes here.

Work through the video that accompanies Example 1 and take notes here: Determine whether each relation is a function, and then find the domain and range.

c.
$$\{(3, 7), (-3, 2), (-4, 5), (1, 4), (3, -4)\}$$

d. $\{(-1, 2), (0, 2), (1, 5), (2, 3), (3, 2)\}$

190

Work through Example 2 and take notes here: Use the domain and range of the following relation to determine whether the relation is a function.

Section 3.1 Objective 2 Determining Whether Equations Represent Functions Work through the interactive video that accompanies Example 3 and take notes here: Determine whether the following functions represent y as a function of x.

a. 3x - 2y = -12

b. $y = 3x^2 - x + 2$

c. $(x + 3)^2 + y^2 = 16$

Section 3.1 Objective 3 Using Function Notation; Evaluating Functions

Carefully take notes from the video that accompanies Objective 3.

What is the definition of an **independent variable**?

What is the definition of a **dependent variable**?

Fill out the following table as seen in this video. (Add more values if you wish.)

Domain Value	Range Value	Ordered Pair
x	$f(x) = \frac{3}{2}x + 6$	(x, f(x))

Now sketch the function $f(x) = \frac{3}{2}x + 6$ using your values from the table .

Work through the interactive video that accompanies Example 4 and take notes here:

Rewrite these equations using function notation where y is a function of x. Then answer the question following each equation.

a. 3x - y = 5

What is the value of f(4)?

b. $x^2 - 2y + 1 = 0$

Does the point (-2,1) lie on the graph of this function?

c. y + 7 = 0

What is f(x) when x = 3?

Work through Example 5:

Given that $f(x) = x^2 + x - 1$, evaluate the following:

a. f(0)

b. *f*(−1)

c. f(x+h)

d. $\frac{f(x+h) - f(x)}{h}$ (Note that there is a video solution to part d.)

Section 3.1 Objective 4 Using the Vertical Line Test Watch the video that accompanies Objective 4 and write your notes here:

In your own words, explain how the **vertical line test** works:

Work through Example 6 in your eText and take notes here: Use the vertical line test to determine which of the following graphs represents the graph of a function.

Section 3.1 Objective 5 Classifying Functions Define a **polynomial function** here:

Give an example of a polynomial function here:

Work through the video that accompanies Example 7 and take notes here: Determine whether the following functions are polynomial functions. If the function is a polynomial function, state the degree of the polynomial function.

a.
$$f(x) = 7 - 3x^2 + 5x^3$$

b. $h(t) = -11$
c. $f(t) = 3t^6 + \frac{1}{t}$

Define a **rational function** here:

Write down the **Tip** that can be seen below the definition of a rational function.

Give an example of a rational function here:

Work through the video that accompanies Example 8 and take notes here: Determine whether the following functions are rational functions.

a.
$$f(t) = \frac{t^3 - 1}{t + 1}$$
 b. $h(x) = (x^3 - x^2 - 9)x^{-5}$

Define a **root function** here:

Give an example of two different root functions. One root function should be an odd root function and the other should be an even root function.

Section 3.1 Objective 6 Determining the Domain of a Function Given the Equation Carefully work through the video that accompanies Objective 6 and fill in the following blanks:

The domain of a function $y = f(x)$ is the set	of	of
for which the function is		

The domain of every **polynomial function** is ______.

The domain of every **rational function** is the set of all ______ numbers such that ______.

The Domain of a Root Function of the Form $f(x) = \sqrt[n]{g(x)}$

- 1. If *n* is even, then the domain is the solution to the inequality ______.
- If *n* is odd, then the domain is the set of all ______ numbers for which ______ is defined.

Below is a summary of the three classifications of functions seen in the previous video and a summary of how to find the domain of each. Use this summary for future reference.

Class of Function	Form	Domain
Polynomial functions	$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$	Domain is (−∞, ∞).
Rational functions	$f(x) = \frac{g(x)}{h(x)}$, where $g \neq 0$ and h are polynomial functions such that the degree of $h(x)$ is greater than 0.	Domain is all real numbers such that $h(x) \neq 0$.
Root functions	$f(x) = \sqrt[n]{g(x)}$, where $g(x)$ is a function and n is an integer such that $n \ge 2$.	 If n is even, the domain is the solution to the inequality g(x) ≥ 0. If n is odd, the domain is the set of all real numbers for which g is defined.

Work through interactive video that accompanies Example 9 and explain how to find the domain of each of the following functions:

a. $f(x) = 2x^2 - 5x$

$$f(x) = \frac{x}{x^2 - x - 6}$$

$$h(x) = \sqrt{x^2 - 2x - 8}$$

d. $f(x) = \sqrt[3]{5x-9}$