Section 3.1 Guided Notebook

Section 3.1 Relations and Functions

Work through Objective 1$\square \quad$ Work through Objective 2Work through Objective 3
Work through Objective 4
Work through Objective 5
Work through Objective 6

Section 3.1 Relations and Functions

Section 3.1 Objective 1 Understanding the Definitions of Relations and Functions

Watch the video that accompanies the definition of a relation and take notes here:

Write down the definition of a relation.

Write an example of a relation as seen in the video and state the domain and range of the relation.

Write down the definition of a function.

Read through the text preceding Example 1 to further clarify functions and relations and take notes here.

Work through the video that accompanies Example 1 and take notes here:
Determine whether each relation is a function, and then find the domain and range.
a.

b.

c. $\{(3,7),(-3,2),(-4,5),(1,4),(3,-4)\}$
d. $\{(-1,2),(0,2),(1,5),(2,3),(3,2)\}$

Work through Example 2 and take notes here: Use the domain and range of the following relation to determine whether the relation is a function.

Section 3.1

Section 3.1 Objective 2 Determining Whether Equations Represent Functions
Work through the interactive video that accompanies Example 3 and take notes here:
Determine whether the following functions represent y as a function of x.
a. $3 x-2 y=-12$
b. $y=3 x^{2}-x+2$
c. $(x+3)^{2}+y^{2}=16$

Section 3.1 Objective 3 Using Function Notation; Evaluating Functions

Carefully take notes from the video that accompanies Objective 3.

What is the definition of an independent variable?

What is the definition of a dependent variable?

Section 3.1

Fill out the following table as seen in this video. (Add more values if you wish.)

Domain Value x	Range Value $f(x)=\frac{3}{2} x+6$	Ordered Pair $(x, f(x))$

Now sketch the function $f(x)=\frac{3}{2} x+6$ using your values from the table .

Work through the interactive video that accompanies Example 4 and take notes here:
Rewrite these equations using function notation where y is a function of x. Then answer the question following each equation.
a. $3 x-y=5$

What is the value of $f(4)$?
b. $x^{2}-2 y+1=0$

Does the point $(-2,1)$ lie on the graph of this function?
c. $y+7=0$

What is $f(x)$ when $x=3$?

Section 3.1

Work through Example 5:
Given that $f(x)=x^{2}+x-1$, evaluate the following:
a. $f(0)$
b. $f(-1)$
c. $f(x+h)$
d. $\frac{f(x+h)-f(x)}{h}$ (Note that there is a video solution to part d.)

Section 3.1 Objective 4 Using the Vertical Line Test
Watch the video that accompanies Objective 4 and write your notes here:

In your own words, explain how the vertical line test works:

Section 3.1

Work through Example 6 in your eText and take notes here: Use the vertical line test to determine which of the following graphs represents the graph of a function.
a.

b.

c.

Section 3.1 Objective 5 Classifying Functions

Define a polynomial function here:

Give an example of a polynomial function here:

Work through the video that accompanies Example 7 and take notes here:
Determine whether the following functions are polynomial functions. If the function is a polynomial function, state the degree of the polynomial function.
a. $f(x)=7-3 x^{2}+5 x^{3}$
b. $h(t)=-11$
c. $f(t)=3 t^{6}+\frac{1}{t}$

Define a rational function here:

Write down the Tip that can be seen below the definition of a rational function.

Give an example of a rational function here:

Work through the video that accompanies Example 8 and take notes here:
Determine whether the following functions are rational functions.
a. $f(t)=\frac{t^{3}-1}{t+1}$
b. $h(x)=\left(x^{3}-x^{2}-9\right) x^{-5}$

Section 3.1

Define a root function here:

Give an example of two different root functions. One root function should be an odd root function and the other should be an even root function.

Section 3.1 Objective 6 Determining the Domain of a Function Given the Equation Carefully work through the video that accompanies Objective 6 and fill in the following blanks:

The domain of a function $y=f(x)$ is the set of \qquad of for which the function is \qquad —.

The domain of every polynomial function is \qquad .

The domain of every rational function is the set of all \qquad numbers such that \qquad .

The Domain of a Root Function of the Form $f(x)=\sqrt[n]{g(x)}$

1. If n is even, then the domain is the solution to the inequality \qquad .
2. If n is odd, then the domain is the set of all \qquad numbers for which
\qquad is defined.

Below is a summary of the three classifications of functions seen in the previous video and a summary of how to find the domain of each. Use this summary for future reference.

Class of Function	Form	Domain
Polynomial functions	$f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$	Domain is $(-\infty, \infty)$.
Rational functions	$f(x)=\frac{g(x)}{h(x)}$, where $g \neq 0$ and h are polynomial functions such that the degree of $h(x)$ is greater than 0.	Domain is all real numbers such that $h(x) \neq 0$.
Root functions	$f(x)=\sqrt[n]{g(x)}$, where $g(x)$ is a function and n is an integer such that $n \geq 2$.	1. If n is even, the domain is the solution to the inequality $g(x) \geq 0$. 2. If n is odd, the domain is the set of all real numbers for which g is defined.

Work through interactive video that accompanies Example 9 and explain how to find the domain of each of the following functions:
a. $f(x)=2 x^{2}-5 x$
b. $f(x)=\frac{x}{x^{2}-x-6}$

Section 3.1

c. $h(x)=\sqrt{x^{2}-2 x-8}$
d. $f(x)=\sqrt[3]{5 x-9}$

