Section 2.4 Guided Notebook

Section 2.4 Parallel and Perpendicular Lines

\square Work through Objective 1
\square Work through Objective 2
\square Work through Objective 3
\square Work through Objective 4
\square Work through Objective 5

Section 2.4 Parallel and Perpendicular Lines

Section 2.4 Objective 1 Understanding the Definition of Parallel Lines
Write down the Theorem found in Objective 1:

Work through the video that accompanies Example 1 and write your notes here:
Show that the lines $y=-\frac{2}{3} x-1$ and $4 x+6 y=12$ are parallel.

Section 2.4 Objective 2 Understanding the Definition of Perpendicular Lines Write down the Theorem found in Objective 2:

Draw and label Figure 30 here:

Work through the video that accompanies Example 2 and write your notes here: Show that the lines $3 x-6 y=-12$ and $2 x+y=4$ are perpendicular.

Write down the Summary of Parallel and Perpendicular Lines following Example 2 here:

Write down the Tip seen on page 2.4-9.

Section 2.4 Objective 3 Determining Whether Two Lines Are Parallel, Perpendicular, or

Neither

Watch the video that accompanies Example 3 and take notes here:
For each of the following pairs of lines, determine whether the lines are parallel, perpendicular, or neither.
$3 x-y=4$
a. $x+3 y=7$
b. $y=\frac{1}{2} x+3$

$$
x+2 y=1
$$

c. $x=-1$
c. $x=3$

Section 2.4

Section 2.4 Objective 4 Finding the Equations of Parallel and Perpendicular Lines
You may want to turn back to your notes from Section 2.3 and write down the following equations of lines:

Point-Slope Form

Slope-Intercept Form

Standard Form

Horizontal Line

Vertical Line

Watch the video that accompanies Example 4 and take notes here:
Find the equation of the line parallel to the line $2 x+4 y=1$ that passes through the point $(3,-5)$. Write the answer in point-slope form, slope-intercept form, and standard form.

Watch the video that accompanies Example 5 and take notes here:
Find the equation of the line perpendicular to the line $y=-5 x+2$ that passes through the point $(3,-1)$. Write the answer in slope-intercept form.

