Section 1.8 Guided Notebook

Section 1.8 Absolute Value Equations and Inequalities

$\square \quad$ Work through Section 1.8 TTK
$\square \quad$ Work through Section 1.8 TTK
$\square \quad$ Work through Objective 1Work through Objective 2
Work through Objective 3

Section 1.8 Absolute Value Equations and Inequalities

1.8 Things To Know

1. Solving Three-Part Inequalities in One Variable (Section 1.7)

Try this one: $-2 \leq \frac{2-4 x}{3}<5$. Watch the video to check your solution.

You will see in Section 1.8 that you will need to be able to set up and solve a three-part inequality.
2. Solving Compound Inequalities in One Variable (Section 1.7)

Try this one: $x+3 \leq 1$ or $2 x-5>7$. Watch the video to check your solution.

You will see in Section 1.8 that you will need to be able to set up and solve a compound inequality with "or".

An Introduction to Absolute Value

Read the introduction to Section 1.8 and watch the video that accompanies it and take notes here:

Section 1.8

Complete Table 1 below:

Table 1 Absolute Value Equations and Inequality Properties

Let u be an algebraic expression and c be a real number such that $c>0$, then

1. $|u|=c$ equivalent to \qquad .
2. $|u|<c$ equivalent to \qquad .
3. $|u|>c$ equivalent to \qquad .

Section 1.8 Objective 1 Solving an Absolute Value Equation
Work through the video that accompanies Example 1 and take notes here:
Solve $|1-3 x|=4$.

Note that the absolute value equation in Example 1 is in standard form. Make sure that you ALWAYS get your absolute value equations into standard form before solving the equation.

Work through the interactive video that accompanies Example 2 and take notes here:
Solve each absolute value equation.
a. $-2|1-3 x|+5=-9$
b. $\left|\frac{5 x-1}{x+3}\right|=11$
c. $\left|x^{2}-x-8\right|=4$
d. $|\sqrt{2 x+9}-x|=3$

Section 1.8

Section 1.8 Objective 2 Solving an Absolute Value Inequalities Fill in the blanks.

When we encounter an inequality of the form $|u|<c$ where c is a positive constant, property \qquad states that the inequality is equivalent to the three-part inequality \qquad .

Work through the video that accompanies Example 3 and take notes here:
Solve $|4 x-3|+2 \leq 7$.

Fill in the blanks.
When we encounter an inequality of the form $|u|>c$ where c is a positive constant, property \qquad states that the inequality is equivalent to the compound inequality \qquad .

Work through the video that accompanies Example 4 and take notes here: Solve $|5 x+1|>3$.

Work through the video that accompanies Example 5 and take notes here:
Solve $7-2|1-4 x| \leq-9$.

Section 1.8

Work through the interactive video that accompanies Example 6 and take notes here: Solve each of the following.
a. $|3 x-2|=0$
b. $|x+6|=-4$
c. $|7 x+5| \leq 0$
d. $|3-4 x|<-6$
e. $|8 x-3|>0$
f. $|1-9 x| \geq-5$

