Section 1.6 Guided Notebook

Section 1.6 Other Types of Equations

$\square \quad$ Work through Section 1.6 TTK \#1
$\square \quad$ Work through Section 1.6 TTK \#2
$\square \quad$ Work through Objective 1
$\square \quad$ Work through Objective 2
$\square \quad$ Work through Objective 3

Section 1.6 Other Types of Equations

1.6 Things To Know

1. Factoring Trinomials with a Leading Coefficient Equal to 1 (Section R.5) It is essential that you can factor trinomials....can you? Try to factor the three trinomials below. (Watch the video to see how to factor each of these trinomials.)
$x^{2}-2 x-24$

$$
x^{2}+4 x-21
$$

$$
x^{2}-12 x+32
$$

2. Factoring Trinomials with a Leading Coefficient Not Equal to 1 (Section R.5) It is essential that you can factor trinomials....can you? Try to factor the two trinomials below. (Watch the video to see how to factor each of these trinomials.)

$$
6 x^{2}-7 x-3
$$

$$
12 x^{2}-25 x+12
$$

Section 1.6 Objective 1 Solving Higher-Order Polynomial Equations

Work through Example 1 and take notes here. Watch the video to check your solutions. Find all solutions of the equation $3 x^{3}-2 x=-5 x^{2}$.

Section 1.6

Work through Example 2 and take notes here. Watch the video to check your solutions. Find all solutions of the equation $2 x^{3}-x^{2}+8 x-4=0$.

Section 1.6 Objective 2 Solving Equations That are Quadratic In Form (Disguised

 Quadratics)What does it mean for an equation to be "quadratic in form?"

Work through the interactive video that accompanies Example 3 and solve each equation: Example 3a: $2 x^{4}-11 x^{2}+12=0$

Example 3b: $\left(\frac{1}{x-2}\right)^{2}+\frac{2}{x-2}-15=0$

Example 3c: $x^{2 / 3}-9 x^{1 / 3}+8=0$ (Hint: $\left(x^{a}\right)^{b}=x^{a b}$)

Section 1.6

Example 3d: $3 x^{-2}-5 x^{-1}-2=0$

Section 1.6 Objective 3 Solving Equations Involving Radicals

Work through Example 4 taking notes here. Watch the video to check your work.

Solve $\sqrt{x-1}-2=x-9$.

As indicated in the video, make sure that you ALWAYS isolate the radical prior to squaring both sides of an equation that involves a square root.

What is an extraneous solution?

Why is it important to check your solutions when solving equations involving radicals?

Work through the video that accompanies Example 5 taking notes here:
Solve $\sqrt{2 x+3}+\sqrt{x-2}=4$.

Work through the video that accompanies Example 6 taking notes here:
Solve $\sqrt[3]{1-4 x}+3=0$.

