Station #1:

Find the derivative of the function. $f(x) = x^5 + \sin x + \cos x + \ln x + e^x$

a.
$$f'(x)=5x + \cos x + \sin x + \frac{1}{x} + e^{x}$$
 go to station 13
b. $f'(x)=x^{4} + \cos x - \sin x + \ln x + x e^{x-1}$ go to station 8
c. $f'(x)=5x^{4} + \cos x - \sin x + \frac{1}{x} + e^{x}$ go to station 7
d. $f'(x)=5x^{4} - \cos x + \sin x + \ln + x e^{x-1}$ go to station 2

Station #2:
Find
$$dy/dx$$
. $y=5x^3+\sqrt[3]{x}+\frac{1}{x^2}+\sqrt{x}+8$
a. $\frac{dy}{dx}=8x^2+\frac{1}{3\sqrt{x}}-2x+\frac{1}{2\sqrt{x}}$ go to station 12
b. $\frac{dy}{dx}=15x^2+\frac{1}{3\sqrt[3]{x^2}}-\frac{2}{x^3}+\frac{1}{2\sqrt{x}}$ go to station 3
c. $\frac{dy}{dx}=15x^2+\frac{1}{3\sqrt[3]{x^2}}-2x+\frac{1}{2\sqrt{x}}+8$ go to station 11
d. $\frac{dy}{dx}=8x^2+\frac{1}{3\sqrt[3]{x^2}}-\frac{2}{x^3}+\sqrt{x}+8$ go to station 9

Station #3:
Find y'.
$$y = \sin(2x+1) + \cos(3x^2-5) + e^{7x+1} + \ln(5x-1) + (4x-3)^6$$

a. $y' = 2\cos(2x+1) - 6x\sin(3x^2-5) + 7e^{7x+1} + \frac{5}{5x-1} + 24(4x-3)^5$ go to station 11
b. $y' = \cos(2x+1) - \sin(3x^2-5) + e^{7x+1} + \frac{1}{5x-1} + 6(4x-3)^5$ go to station 12
c. $y' = 2\cos(2x+1) - 6x\sin(3x^2-5) + 7e^{7x+1} + \frac{5}{5x-1} + 24(4x-3)$ go to station 6
d. $y' = 2\sin(2x+1) - 6x\cos(3x^2-5) + e^{7x+1} + \frac{1}{x-1} + 6(4x-3)^5$ go to station 9

Station #4: Find $f'(x)$ if $f(x)=x\sqrt{2x-3}$		
a. $f'(x) = \frac{3x-3}{\sqrt{2x-3}}$	go to station 14	
b. $f'(x) = \frac{-x+3}{\sqrt{2x-3}}$	go to station 1	
c. $f'(x) = \frac{x}{\sqrt{2x-3}}$	go to station 7	
d. $f'(x) = \frac{5x-6}{2\sqrt{2x-3}}$	go to station 8	

Station #5:
Find
$$\frac{d}{dx} \left[\frac{1+x^2}{1-x^2} \right]$$
.
a. $\frac{d}{dx} \left[\frac{1+x^2}{1-x^2} \right] = \frac{-4x}{(1-x^2)^2}$ go to station 1
b. $\frac{d}{dx} \left[\frac{1+x^2}{1-x^2} \right] = \frac{4x}{(1-x^2)^2}$ go to station 10
c. $\frac{d}{dx} \left[\frac{1+x^2}{1-x^2} \right] = \frac{-4x^3}{(1-x^2)^2}$ go to station 4
d. $\frac{d}{dx} \left[\frac{1+x^2}{1-x^2} \right] = \frac{2x}{1-x^2}$ go to station 14

Station #6:

Find the derivative.
$$y=x^2 \sin \frac{1}{x}$$
 $(x \neq 0)$
a. $y'=2x \sin \frac{1}{x}-x^2 \cos \frac{1}{x}$ go to station 10
b. $y'=-\frac{2}{x} \cos \frac{1}{x}$ go to station 14
c. $y'=2x \sin \frac{1}{x}-\cos \frac{1}{x}$ go to station 5
d. $y'=2x \cos \frac{1}{x}$ go to station 4

Station #7:

Find the equation of the tangent line for $f(x)=3x^2-2x+7$ at x=1.

1	a.	y-1=4(x-1)	go to station 3
1	b.	y - 7 = 1(x - 1)	go to station 2
	c.	y - 8 = 1(x - 1)	go to station 13
	d.	y - 8 = 4(x - 1)	go to station 8

Station #8:

If an object is thrown upward at 64ft/s from a height of 20 feet, its height S after x seconds is given by $S(x)=20+64x-16x^2$

What is the average velocity in the first 2 seconds it is thrown? What is the velocity at 2 seconds? What is the acceleration at 2 seconds?

a.	$84 ft sec; 0 ft sec; -9.8 ft^2 sec$	go to station 11
b.	32 ft/sec; 32 ft/sec; 32 ft ² /sec	go to station 3
c.	$32 ft sec ; 0 ft sec ; -32 ft^2 sec$	go to station 13
d.	84 ft/sec; 32 ft/sec; -9.8 ft ² /sec	go to station 2

Station #9:

The radius r of a sphere is increasing at a uniform rate of 0.3 inches per second. At the instant when the surface area S becomes 100π square inches, what is the rate of increase, in cubic inches per second, in the volume V? $\left(S=4\pi r^2; V=\frac{4}{3}\pi r^3\right)$

- a. 30π in³/sec go to station 6
- b. 10π in³/sec go to station 10
- c. 12π in³/sec go to station 4
- d. $22.5\pi \text{ in}^3/\text{sec}$ go to station 5

	Station #10: Use implicit differentiation to find dy/dx. $x^3 - xy + y^3 = 1$		
	$\frac{dy}{dx} = \frac{3x^2}{x-3y^2}$	x - xy + y = 1 go to station 7	
b.	$\frac{dy}{dx} = \frac{3x^2 - 1}{1 - 3y^2}$	go to station 14	
c.	$\frac{dy}{dx} = \frac{3x^2 - 3y^2 - y}{x}$	go to station 1	
d.	$\frac{dy}{dx} = \frac{y - 3x^2}{3y^2 - x}$	go to station 4	

Station #11:
Find
$$D_x[y]$$
 if $y=2^x+3^{4x}+\log_5 x+\log_6(7x+1)$.
a. $D_x[y]=2^x+4(3^{4x})+\frac{1}{x}+\frac{7}{7x+1}$ go to station 5
b. $D_x[y]=(\ln 2)2^x+(\ln 3)3^{4x}+\frac{1}{(\ln 5)x}+\frac{1}{(\ln 6)(7x+1)}$ go to station 6
c. $D_x[y]=x2^{x-1}+(4x)3^{4x-1}+\frac{1}{(\ln 5)x}+\frac{7}{(\ln 6)(7x+1)}$ go to station 9
d. $D_x[y]=(\ln 2)2^x+4(\ln 3)3^{4x}+\frac{1}{(\ln 5)x}+\frac{7}{(\ln 6)(7x+1)}$ go to station 12

Station #12: Find $D_x[f]$ if $f(x)=3\tan x + \sec(4x) + \csc(x^2) + \cot^2(5x)$. a. $D_x[f]=3\sec^2 x + \sec(4x)\tan(4x) - \csc(x^2)\cot(x^2) - 2\cot(5x)\csc^2(5x)$ go to station 10 b. $D_x[f]=3\sec^2 x + 4\sec(4x)\tan(4x) - 2x\csc(x^2)\cot(x^2) - 5\csc^2(5x)$ go to station 6 c. $D_x[f]=3\sec^2 x + 4\sec(4x)\tan(4x) - 2x\csc(x^2)\cot(x^2) - 10\cot(5x)\csc^2(5x)$ go to station 9 d. $D_x[f]=\sec^2 x + 4\sec(4x)\tan(4x) - 2x\csc(x^2)\cot(x^2) - 2\cot(5x)\csc^2(5x)$ go to station 5

Station #13: Find f'(x) for $f(x) = \arcsin(x^2) + \arccos(3x) + 2\arctan(x) + 4\arccos(x) + \arccos(5x) + \arccos(\sqrt{x}).$ a. $f'(x) = \frac{2x}{\sqrt{1-x^4}} + \frac{3}{\sqrt{1-9x^2}} + \frac{2}{1+x^2} + \frac{4}{|x|\sqrt{x^2-1}} + \frac{5}{|5x|\sqrt{25x^2-1}} + \frac{1}{2\sqrt{x}(1+x)}$ go to station 3 b. $f'(x) = \frac{2x}{\sqrt{1-x^4}} - \frac{3}{\sqrt{1-9x^2}} + \frac{2}{1+x^2} + \frac{4}{|x|\sqrt{x^2-1}} - \frac{5}{|5x|\sqrt{25x^2-1}} - \frac{1}{2\sqrt{x}(1+x)}$ go to station 2 c. $f'(x) = \frac{1}{\sqrt{1-x^4}} - \frac{1}{\sqrt{1-9x^2}} + \frac{1}{1+x^2} + \frac{1}{|x|\sqrt{x^2-1}} - \frac{1}{|5x|\sqrt{25x^2-1}} - \frac{1}{1+x}$ go to station 11 d. $f'(x) = \frac{2x}{\sqrt{1-x^2}} - \frac{3}{\sqrt{1-3x^2}} + \frac{2}{1+x^2} + \frac{4}{|x|\sqrt{x^2-1}} - \frac{5}{|5x|\sqrt{5x^2-1}} - \frac{1}{2\sqrt{x}(1+x)}$ go to station 12

Station #14: Find $\frac{d^3 y}{dx^3}$ for $y=5x^6+7x^5-8x^4+9x^3+3x^2-2x+7$. a. $\frac{d^3 y}{dx^3}=30x^5+35x^4-24x^3+27x^2+6x-2$ go to station 7 b. $\frac{d^3 y}{dx^3}=150x^4+140x^3-72x^2+54x+6$ go to station 13 c. $\frac{d^3 y}{dx^3}=600x^3+420x^2-144x+54$ go to station 1 d. $\frac{d^3 y}{dx^3}=1800x^2+840x-144$ go to station 8

Path

Answers	
Station #1	$f'(x) = 5x^4 + \cos x - \sin x + \frac{1}{x} + e^x$
Station #2	$\frac{dy}{dx} = 15x^2 + \frac{1}{3\sqrt[3]{x^2}} - \frac{2}{x^3} + \frac{1}{2\sqrt{x}}$
Station #3	$y' = 2\cos(2x+1) - 6x\sin(3x^2-5) + 7e^{7x+1} + \frac{5}{5x-1} + 24(4x-3)^5$
Station #4	$f'(x) = \frac{3x-3}{\sqrt{2x-3}}$
Station #5	$\frac{d}{dx} \left[\frac{1+x^2}{1-x^2} \right] = \frac{4x}{(1-x^2)^2}$
Station #6	$y' = 2x \sin \frac{1}{x} - \cos \frac{1}{x}$
Station #7	y - 8 = 4(x - 1)
Station #8	$32 ft/sec; 0 ft/sec; -32 ft^{2}/sec$
Station #9	30π in ³ /sec
Station #10	$\frac{dy}{dx} = \frac{y-3x^2}{3y^2-x}$
Station #11	$D_x[y] = (\ln 2)2^x + 4(\ln 3)3^{4x} + \frac{1}{(\ln 5)x} + \frac{7}{(\ln 6)(7x+1)}$
Station #12	$D_{x}[f] = 3\sec^{2} x + 4\sec(4x)\tan(4x) - 2x\csc(x^{2})\cot(x^{2}) - 10\cot(5x)\csc^{2}(5x)$
Station #13	$f'(x) = \frac{2x}{\sqrt{1-x^4}} - \frac{3}{\sqrt{1-9x^2}} + \frac{2}{1+x^2} + \frac{4}{ x \sqrt{x^2-1}} - \frac{5}{ 5x \sqrt{25x^2-1}} - \frac{1}{2\sqrt{x}(1+x)}$
Station #14	$\frac{d^3 y}{d x^3} = 600 x^3 + 420 x^2 - 144 x + 54$

1 to 7 to 8 to 13 to 2 to 3 to 11 to 12 to 9 to 6 to 5 to 10 to 4 to 14 to 1