Station \#1:

Find the derivative of the function. $\quad f(x)=x^{5}+\sin x+\cos x+\ln x+e^{x}$
a. $f^{\prime}(x)=5 x+\cos x+\sin x+\frac{1}{x}+e^{x} \quad$ go to station 13
b. $f^{\prime}(x)=x^{4}+\cos x-\sin x+\ln x+x e^{x-1} \quad$ go to station 8
c. $f^{\prime}(x)=5 x^{4}+\cos x-\sin x+\frac{1}{x}+e^{x} \quad$ go to station 7
d. $f^{\prime}(x)=5 x^{4}-\cos x+\sin x+\ln +x e^{x-1} \quad$ go to station 2

Station \#2:

Find $\quad d y / d x . \quad y=5 x^{3}+\sqrt[3]{x}+\frac{1}{x^{2}}+\sqrt{x}+8$
a. $\frac{d y}{d x}=8 x^{2}+\frac{1}{3 \sqrt{x}}-2 x+\frac{1}{2 \sqrt{x}} \quad$ go to station 12
b. $\frac{d y}{d x}=15 x^{2}+\frac{1}{3 \sqrt[3]{x^{2}}}-\frac{2}{x^{3}}+\frac{1}{2 \sqrt{x}} \quad$ go to station 3
c. $\frac{d y}{d x}=15 x^{2}+\frac{1}{3 \sqrt[2]{x^{3}}}-2 x+\frac{1}{2 \sqrt{x}}+8 \quad$ go to station 11
d. $\frac{d y}{d x}=8 x^{2}+\frac{1}{3 \sqrt[3]{x^{2}}}-\frac{2}{x^{3}}+\sqrt{x}+8 \quad$ go to station 9

Station \#3:

Find $\quad y^{\prime} . \quad y=\sin (2 x+1)+\cos \left(3 x^{2}-5\right)+e^{7 x+1}+\ln (5 x-1)+(4 x-3)^{6}$
a. $y^{\prime}=2 \cos (2 x+1)-6 x \sin \left(3 x^{2}-5\right)+7 e^{7 x+1}+\frac{5}{5 x-1}+24(4 x-3)^{5} \quad$ go to station 11
b. $y^{\prime}=\cos (2 x+1)-\sin \left(3 x^{2}-5\right)+e^{7 x+1}+\frac{1}{5 x-1}+6(4 x-3)^{5} \quad$ go to station 12
c. $y^{\prime}=2 \cos (2 x+1)-6 x \sin \left(3 x^{2}-5\right)+7 e^{7 x+1}+\frac{5}{5 x-1}+24(4 x-3) \quad$ go to station 6
d. $y^{\prime}=2 \sin (2 x+1)-6 x \cos \left(3 x^{2}-5\right)+e^{7 x+1}+\frac{1}{x-1}+6(4 x-3)^{5} \quad$ go to station 9

Station \#4:

Find $f^{\prime}(x)$ if $f(x)=x \sqrt{2 x-3}$
a. $f^{\prime}(x)=\frac{3 x-3}{\sqrt{2 x-3}} \quad$ go to station 14
b. $f^{\prime}(x)=\frac{-x+3}{\sqrt{2 x-3}} \quad$ go to station 1
c. $f^{\prime}(x)=\frac{x}{\sqrt{2 x-3}} \quad$ go to station 7
d. $f^{\prime}(x)=\frac{5 x-6}{2 \sqrt{2 x-3}} \quad$ go to station 8

Station \#5:

Find $\frac{d}{d x}\left[\frac{1+x^{2}}{1-x^{2}}\right]$.
a. $\frac{d}{d x}\left[\frac{1+x^{2}}{1-x^{2}}\right]=\frac{-4 x}{\left(1-x^{2}\right)^{2}} \quad$ go to station 1
b. $\frac{d}{d x}\left[\frac{1+x^{2}}{1-x^{2}}\right]=\frac{4 x}{\left(1-x^{2}\right)^{2}}$ go to station 10
c. $\frac{d}{d x}\left[\frac{1+x^{2}}{1-x^{2}}\right]=\frac{-4 x^{3}}{\left(1-x^{2}\right)^{2}} \quad$ go to station 4
d. $\quad \frac{d}{d x}\left[\frac{1+x^{2}}{1-x^{2}}\right]=\frac{2 x}{1-x^{2}}$ go to station 14

Station \#6:

Find the derivative. $\quad y=x^{2} \sin \frac{1}{x} \quad(x \neq 0)$
a. $y^{\prime}=2 x \sin \frac{1}{x}-x^{2} \cos \frac{1}{x} \quad$ go to station 10
b. $y^{\prime}=-\frac{2}{x} \cos \frac{1}{x} \quad$ go to station 14
c. $y^{\prime}=2 x \sin \frac{1}{x}-\cos \frac{1}{x} \quad$ go to station 5
d. $y^{\prime}=2 x \cos \frac{1}{x} \quad$ go to station 4

Station \#7:

Find the equation of the tangent line for $f(x)=3 x^{2}-2 x+7$ at $x=1$.
a. $y-1=4(x-1) \quad$ go to station 3
b. $y-7=1(x-1) \quad$ go to station 2
c. $y-8=1(x-1) \quad$ go to station 13
d. $y-8=4(x-1) \quad$ go to station 8

Station \#8:

If an object is thrown upward at $64 \mathrm{ft} / \mathrm{s}$ from a height of 20 feet, its height S after x seconds is given by

$$
S(x)=20+64 x-16 x^{2}
$$

What is the average velocity in the first 2 seconds it is thrown? What is the velocity at 2 seconds?
What is the acceleration at 2 seconds?
a. $84 \mathrm{ft} / \mathrm{sec} ; 0 \mathrm{ft} / \mathrm{sec} ;-9.8 \mathrm{ft}^{2} / \mathrm{sec} \quad$ go to station 11
b. $\quad 32 \mathrm{ft} / \mathrm{sec} ; 32 \mathrm{ft} / \mathrm{sec} ; 32 \mathrm{ft}^{2} / \mathrm{sec} \quad$ go to station 3
c. $32 \mathrm{ft} / \mathrm{sec} ; 0 \mathrm{ft} / \mathrm{sec} ;-32 \mathrm{ft}^{2} / \mathrm{sec} \quad$ go to station 13
d. $84 \mathrm{ft} / \mathrm{sec} ; 32 \mathrm{ft} / \mathrm{sec} ;-9.8 \mathrm{ft}^{2} / \mathrm{sec} \quad$ go to station 2

Station \#9:

The radius r of a sphere is increasing at a uniform rate of 0.3 inches per second. At the instant when the surface area S becomes 100π square inches, what is the rate of increase, in cubic inches per second, in the volume $\mathrm{V} ? \quad\left(S=4 \pi r^{2} ; V=\frac{4}{3} \pi r^{3}\right)$
a. $30 \pi \quad \mathrm{in}^{3} / \mathrm{sec}$ go to station 6
b. $\quad 10 \pi \mathrm{in}^{3} / \mathrm{sec}$ go to station 10
c. $\quad 12 \pi \quad \mathrm{in}^{3} / \mathrm{sec}$ go to station 4
d. $22.5 \pi \mathrm{in}^{3} / \mathrm{sec}$ go to station 5

Station \#10:

Use implicit differentiation to find dy/dx. $\quad x^{3}-x y+y^{3}=1$
a. $\frac{d y}{d x}=\frac{3 x^{2}}{x-3 y^{2}}$
go to station 7
b. $\frac{d y}{d x}=\frac{3 x^{2}-1}{1-3 y^{2}}$
c. $\frac{d y}{d x}=\frac{3 x^{2}-3 y^{2}-y}{x}$
go to station 1
d. $\frac{d y}{d x}=\frac{y-3 x^{2}}{3 y^{2}-x}$
go to station 14

Station \#11:

Find $D_{x}[y]$ if $y=2^{x}+3^{4 x}+\log _{5} x+\log _{6}(7 x+1)$.
a. $\quad D_{x}[y]=2^{x}+4\left(3^{4 x}\right)+\frac{1}{x}+\frac{7}{7 x+1}$
go to station 5
b. $D_{x}[y]=(\ln 2) 2^{x}+(\ln 3) 3^{4 x}+\frac{1}{(\ln 5) x}+\frac{1}{(\ln 6)(7 x+1)} \quad$ go to station 6
c. $D_{x}[y]=x 2^{x-1}+(4 x) 3^{4 x-1}+\frac{1}{(\ln 5) x}+\frac{7}{(\ln 6)(7 x+1)} \quad$ go to station 9
d. $D_{x}[y]=(\ln 2) 2^{x}+4(\ln 3) 3^{4 x}+\frac{1}{(\ln 5) x}+\frac{7}{(\ln 6)(7 x+1)} \quad$ go to station 12

Station \#12:

Find $D_{x}[f]$ if $f(x)=3 \tan x+\sec (4 x)+\csc \left(x^{2}\right)+\cot ^{2}(5 x)$.
a. $\quad D_{x}[f]=3 \sec ^{2} x+\sec (4 x) \tan (4 x)-\csc \left(x^{2}\right) \cot \left(x^{2}\right)-2 \cot (5 x) \csc ^{2}(5 x) \quad$ go to station 10
b. $D_{x}[f]=3 \sec ^{2} x+4 \sec (4 x) \tan (4 x)-2 x \csc \left(x^{2}\right) \cot \left(x^{2}\right)-5 \csc ^{2}(5 x) \quad$ go to station 6
c. $D_{x}[f]=3 \sec ^{2} x+4 \sec (4 x) \tan (4 x)-2 x \csc \left(x^{2}\right) \cot \left(x^{2}\right)-10 \cot (5 x) \csc ^{2}(5 x)$ go to station 9
d. $D_{x}[f]=\sec ^{2} x+4 \sec (4 x) \tan (4 x)-2 x \csc \left(x^{2}\right) \cot \left(x^{2}\right)-2 \cot (5 x) \csc ^{2}(5 x)$ go to station 5

Station \#13:

Find $f^{\prime}(x)$ for

$$
f(x)=\arcsin \left(x^{2}\right)+\arccos (3 x)+2 \arctan (x)+4 \operatorname{arcsec}(x)+\operatorname{arccsc}(5 x)+\operatorname{arccot}(\sqrt{x}) .
$$

a. $f^{\prime}(x)=\frac{2 x}{\sqrt{1-x^{4}}}+\frac{3}{\sqrt{1-9 x^{2}}}+\frac{2}{1+x^{2}}+\frac{4}{|x| \sqrt{x^{2}-1}}+\frac{5}{|5 \mathrm{x}| \sqrt{25 \mathrm{x}^{2}-1}}+\frac{1}{2 \sqrt{x}(1+x)}$ go to station 3
b. $\quad f^{\prime}(x)=\frac{2 x}{\sqrt{1-x^{4}}}-\frac{3}{\sqrt{1-9 x^{2}}}+\frac{2}{1+x^{2}}+\frac{4}{|x| \sqrt{x^{2}-1}}-\frac{5}{|5 \mathrm{x}| \sqrt{25 \mathrm{x}^{2}-1}}-\frac{1}{2 \sqrt{x}(1+x)} \quad$ go to station 2
c. $f^{\prime}(x)=\frac{1}{\sqrt{1-x^{4}}}-\frac{1}{\sqrt{1-9 x^{2}}}+\frac{1}{1+x^{2}}+\frac{1}{|x| \sqrt{x^{2}-1}}-\frac{1}{|5 \mathrm{x}| \sqrt{25 \mathrm{x}^{2}-1}}-\frac{1}{1+x} \quad$ go to station 11
d. $f^{\prime}(x)=\frac{2 x}{\sqrt{1-x^{2}}}-\frac{3}{\sqrt{1-3 x^{2}}}+\frac{2}{1+x^{2}}+\frac{4}{|x| \sqrt{x^{2}-1}}-\frac{5}{|5 x| \sqrt{5 x^{2}-1}}-\frac{1}{2 \sqrt{x}(1+x)} \quad$ go to station 12

Station \#14:

Find $\frac{d^{3} y}{d x^{3}}$ for $y=5 x^{6}+7 x^{5}-8 x^{4}+9 x^{3}+3 x^{2}-2 x+7$.
a. $\frac{d^{3} y}{d x^{3}}=30 x^{5}+35 x^{4}-24 x^{3}+27 x^{2}+6 x-2$
go to station 7
b. $\frac{d^{3} y}{d x^{3}}=150 x^{4}+140 x^{3}-72 x^{2}+54 x+6$
go to station 13
c. $\frac{d^{3} y}{d x^{3}}=600 x^{3}+420 x^{2}-144 x+54$
go to station 1
d. $\frac{d^{3} y}{d x^{3}}=1800 x^{2}+840 x-144$
go to station 8

Path
1 to 7 to 8 to 13 to 2 to 3 to 11 to 12 to 9 to 6 to 5 to 10 to 4 to 14 to 1

Answers

Station \#1	$f^{\prime}(x)=5 x^{4}+\cos x-\sin x+\frac{1}{x}+e^{x}$
Station \#2	$\frac{d y}{d x}=15 x^{2}+\frac{1}{3 \sqrt[3]{x^{2}}}-\frac{2}{x^{3}}+\frac{1}{2 \sqrt{x}}$
Station \#3	$y^{\prime}=2 \cos (2 x+1)-6 x \sin \left(3 x^{2}-5\right)+7 e^{7 x+1}+\frac{5}{5 x-1}+24(4 x-3)^{5}$
Station \#4	$f^{\prime}(x)=\frac{3 x-3}{\sqrt{2 x-3}}$
Station \#5	$\frac{d}{d x}\left[\frac{1+x^{2}}{1-x^{2}}\right]=\frac{4 x}{\left(1-x^{2}\right)^{2}}$
Station \#6	$y^{\prime}=2 x \sin \frac{1}{x}-\cos \frac{1}{x}$
Station \#7	$y-8=4(x-1)$
Station \#8	$32 f t / \sec ; 0 \frac{f t / \sec ;-32 t^{2} / \sec }{}$Station \#9 $30 \pi ~ \mathrm{~m}^{3} / \sec$ Station \#10 $\frac{d y}{d x}=\frac{y-3 x^{2}}{3 y^{2}-x}$ Station \#11 $D_{x}[y]=(\ln 2) 2^{x}+4(\ln 3) 3^{4 x}+\frac{1}{(\ln 5) x}+\frac{7}{(\ln 6)(7 x+1)}$ Station \#12 $D_{x}[f]=3 \sec ^{2} x+4 \sec (4 x) \tan (4 x)-2 x \csc \left(x^{2}\right) \cot \left(x^{2}\right)-10 \cot (5 x) \csc ^{2}(5 x)$ Station \#13 $f^{\prime}(x)=\frac{2 x}{\sqrt{1-x^{4}}}-\frac{3}{\sqrt{1-9 x^{2}}+\frac{2}{1+x^{2}}+\frac{4}{\|x\| \sqrt{x^{2}-1}}-\frac{5}{\|5 x\| \sqrt{25 x^{2}-1}}-\frac{1}{2 \sqrt{x}(1+x)}}$ Station \#14 $\frac{d^{3} y}{d x^{3}}=600 x^{3}+420 x^{2}-144 x+54$

