Textbook chapter 4 review p. 274
$1,5,9,11,13,17,23,27,31,33,35,37,41,43,45,47,55,59,60,73,79,95$.

1. Find all the critical numbers for a) $f(x)=\frac{x-1}{x+1}$
b) $\quad f(x)=x \sqrt{2 x+1}$.
a) none
b) $-1 / 2,-1 / 3$
2. Find the absolute extrema
a) on $[-1,2]$ of $f(x)=\frac{10}{x^{2}+1}$.
$\operatorname{a.max}(0,10), \operatorname{a.min}(2,2)$
b) on $[0,2 \pi]$ for $y=\sin x+\cos x$
$\operatorname{a.max}\left(\frac{\pi}{4} \cdot \sqrt{2}\right) ; \operatorname{a.min}\left(\frac{5 \pi}{4}-\sqrt{2}\right)$
3. Find the c guaranteed by the mean value theorem on the interval $[2,3]$ for $\mathrm{f}(\mathrm{x})=3 \mathrm{x}-\mathrm{x}^{2}$

$$
\mathrm{c}=2.5
$$

4. Find all the open intervals on which $f(x)=\frac{x}{x^{2}+x-2} \quad$ increasing or decreasing. $\operatorname{Dec}(-\infty,-2),(1, \infty)$, Inc (-2, 1)
5. Find the x values that give relative extrema for a) $\mathrm{f}(\mathrm{x})=3 \mathrm{x}^{5}-5 \mathrm{x}^{3}$. b) $y=\frac{2 x}{(x+4)^{3}}$.
c) $\quad f(x)=x^{\frac{1}{3}}(8-x)$
a) r. $\min x=1$, r. $\max x=-1$
c) r. \max at $x=2$.
6. Find the intervals on which the graph of the function $f(x)=x^{4}-4 x^{3}+2$ is concave

$$
(-\infty, 0),(2, \infty) \text { с.ир }
$$

upward or downward. Find the points of inflection.
$(0,2)$ c.down
I.Point(0, 2), (2, -14)
7. Find all of the points of inflection of the graph of
a) $\quad f(x)=x^{4}-x^{3}$.
b) $\quad f(x)=2 x(x-4)^{3}$.
a)
$(0,0),(0.5,-.625$
b) $(4,0),(2,-32)$
8. a) Let $f(x)=x^{3}-x^{2}+3$. Use the second derivative test to find the relative extrema.
b) Let $f(x)=x^{4}+4 x^{3}$. Use the second derivative test to find the relative extrema.

$$
\text { a) r. } \min .(2 / 3,77 / 27 \text { b) r.min }(-3,-27)
$$

9. Use the techniques learned in this chapter to sketch $f(x)=x^{3}+x^{2}-6 x$
10. Determine whether Rolle's Theorem can be applied to the function, $f(x)=(x-2)(x+3)^{2}$ on the interval $[-3,2]$. If it can, then find all values of c guaranteed by the theorem.

$$
c=1 / 3, c=-3
$$

11. Determine whether the Mean Value Theorem can be applied to the function, $g(x)=x^{\frac{2}{3}}$ on the interval $[1,8]$. If it can, then find all values of c guaranteed by the theorem.

$$
\mathrm{c}=3.76
$$

12. For $0 \leq t \leq 4$ a particle moves along the x-axis. The velocity of the particle at any time t is given by $v(t)=\cos \left(\frac{\pi}{2} t\right)$.
a. Find the acceleration at any time t^{\prime} at $\mathrm{t}=3$.

$$
\frac{-\pi}{2} \sin \left(\frac{\pi}{2} t\right) ; \frac{\pi}{2}
$$

b. Is the velocity increasing, decreasing or neither at $t=3$. Explain Increasing $v^{\prime}(3)>0$
13. Use the differential to approximate $\sqrt{82}$
$(163 / 18=9.05)$
14. . For $y=\frac{x^{3}}{3}-\frac{x^{2}}{2}-2 x$ on [-2, 3] find c satisfying Rolle's Theorem. Does not apply.
15. For $y=x^{2}-2 x$ on $[-3,1]$ find c satisfying the Mean Value Theorem. $\boldsymbol{c}=\mathbf{- 1}$
16. Determine where the function $f(x)=x^{4}-2 x^{2}$ is increasing and decreasing and find all relative extrema, if any.
r.max $(0,0)$, r. $\min (-1,-1), 1,-1)$
17. If $f(x)=x^{3}+x^{2}-5 x-5$, determine intervals on which the graph of f is concave up and intervals on which the graph is concave down. c.up $(-1 / 3, \infty)$, c.down $((-\infty,-1 / 3)$
18. Find the differential of $f(x)=4 x^{5 / 2}-x^{-1 / 2}$

$$
\left(10 x^{3 / 2}+(1 / 2) x^{-3 / 2}\right) d x
$$

19. Find the interval where $f(x)=1-x^{\frac{1}{3}}$ is concave up, if any.
20. Graph the function $f(x)=\frac{x^{2}}{x^{2}-1}$. Note that $f^{\prime}(x)=\frac{-2 x}{\left(x^{2}-1\right)^{2}}$ and $f^{\prime \prime}(x)=\frac{2\left(3 x^{2}+1\right)}{\left(x^{2}-1\right)^{3}}$.
21. Find the total number of local maximum or minimum points on $f^{\prime}(x)=x(x-3)^{2}$.
$\operatorname{Min} @ \boldsymbol{x}=\mathbf{0}$
22. If $f(x)=2 x(x-1)^{2}$, when is the graph of f concave down? $\quad(-\infty, \mathbf{2} / \mathbf{3})$
23. Find where $y=5 x^{3}-20 x$ any relative maximum or minimum values has.

$$
\operatorname{Max} @-\frac{2}{\sqrt{3}}, \min @ \frac{2}{\sqrt{3}}
$$

24. $y=x^{4}-4 x^{3}$, Find the total number of inflection points. @ $\boldsymbol{x}=\mathbf{0}, \mathbf{2}$
25. The derivative of a function f is given for all x by $f^{\prime}(x)=x^{2}(x+1)^{3}(x-4)^{2}$. Find all x values where a) the critical points occur b) f is increasing or decreasing

$$
\text { a) }-1,0,4 \quad \text { b) }(-\infty,-1) \text { dec; }(-1,0),(0,4),(4, \infty) \text { inc. }
$$

26. A farmer wants to fence in a piece of land that borders on one side on a river. She has 200 m of fence available and wants to get a rectangular piece of fenced-in land. One side of the property needs no fence because of the river. Find the dimensions of the rectangle that yields maximum area.
27. An open box with a rectangular base is to be constructed from a rectangular piece of cardboard 16 inches wide and 21 inches long by cutting out a square from each corner and then bending up the sides. Find the size of the corner square which will produce a box having the largest possible volume. $\quad \mathbf{x}=\mathbf{3}$
28. The product of two positive numbers is 588. Minimize the sum of the first and three times the second. $\mathbf{1 4 ;}$
29. a. Find the local linear approximation of $f(x)=3 x^{2}-4 x$ at the point where $x=3$.
b. Use your approximation to estimate $f(2.9)$, and $f(3.1)$.

$$
\begin{array}{ll}
\text { a) } y=14 x-27 & \text { b) } \quad 13.6 ; 16.4
\end{array}
$$

30. a) Find dy and Δy for $\mathrm{f}(\mathrm{x})=3 x^{2}+4 x$ at $x=-2$ and $\mathrm{d} x=\Delta x=.01$.
b) Find dy and Δy for $\mathrm{f}(\mathrm{x})=x^{3}-2 \mathrm{x}$ at $x=2$ and $\mathrm{d} x=\Delta x=.1$
a) $\mathrm{d} y=\Delta y=-0.08$
b) $\mathrm{dy}=1, \Delta y=1.061$
31. The curve $2 x^{2} y+y^{2}=2 x+13$ passes through $(3,1)$. Use the tangent line to the curve to find the approximate value of y at $x=2.8$.

$$
\mathrm{y}=(-1 / 2) \mathrm{x}+(5 / 2) \quad f(2.8)=1.1
$$

