Textbook p.196-198 \#3, 5, 13, 19, 23, 29-47 (e о o), 49, 55-83 (e о o), 85, 93, 97, 99, 105, 109.

1. Use the definition of a derivative only to calculate the derivative of
a. $\quad f(x)=x^{2}-3 x+1$
b. $y=\frac{1}{x-1}$
c. $f(x)=\sqrt{x}$
2. Differentiate:
a. $y=\frac{2 x}{1-3 x^{2}}$.
b. $y=x^{3} \sqrt{2 x+1}$
c. $y=\cot ^{3} \sqrt{x}$.
d. $y=\cos ^{-1} e^{3 x}$.
e. $y=\frac{x}{x+y}$
f. $f(\theta)=\sec \left(\theta^{2}\right)$
g. $y=\sin ^{2} x-\cos ^{2} x$.
h. $\quad f(x)=2 x^{3}-7 x+5$
i. $\quad y=\left(2 x^{-8}+5\right)\left(5 x^{6}+7\right)$
j. $\quad y=\left(3 x^{2}+7 x\right)\left(12 x^{-4}+2 x^{5}\right)$
k. $f(x)=e^{x^{2}} \sin ^{-1}(2 x) 1$
3. $f(x)=\frac{\ln (3 x-2)}{x^{2}+1}$
m. $f(x)=\tan (2 x)$
n. $y=x e^{3 x-2}$
o. $\quad f(x)=\tan ^{-1}(\sqrt{x})$
p. $\quad f(x)=7^{x^{2}-2}$
q. $\quad f(x)=\sin ^{-1}\left(x^{2}+1\right)$
4. Find: a. $\frac{d}{d x}\left[\sin \left(x^{2}-1\right)\right]$
b. $\frac{d}{d x}\left[\ln \left(\ln \left(x^{2}\right)\right)\right]$
c. $\frac{d}{d x}\left[(\ln (\ln x))^{2}\right]$
d. $\frac{d}{d x}\left[x^{2}-\frac{2}{x}\right]$
e. $\frac{d}{d x}\left(\frac{e^{x}+1}{\sqrt{x}}\right)$
f. $\left.\quad \frac{d f}{d x}\right]_{x=2}$ if $f(x)=\frac{x+1}{x-1}$
g. $\frac{d^{2} y}{d x^{2}}$ if $y=x \sin (x)$
h. $x=\cos y$
5. Find the equation for the line tangent to $x \cos (y)+x^{2}-2 y=0$ at the point $(0,0)$
6. Using implicit differentiation, find $y^{\prime \prime} \quad x^{2}+y^{2}-2 x y=1$
7. The position function for the movement of a particle is given by $s=\left(t^{3}+1\right)^{2}$ where s is measured in feet and t is measured in seconds. Find the acceleration of the particle at 1 second.
8. Find an equation for the tangent line to the graph of $f(x)=\sqrt{x+1}$ at the point where $x=3$.
9. Find the values of x for all points on the graph of $f(x)=x^{3}-2 x^{2}+5 x-16$ at which the slope of the tangent lie is 4 .
10. Given the function $R=2 x^{2}+\frac{1}{x}$, compare the average rate of change from $x=1$
to $x=3$ with the instantaneous rate of change when $x=2$.
11. A kite is flying 150 m high, where the wind causes it to move horizontally at the rate of 5 m per second. In order to maintain the kite at a height of 150 m , the person must allow more string to be let out. At what rate is the string being let out when the length of the string already out is 250 m ?
12. Two graphs are drawn below. Determine which is f and which is f^{\prime}.

13. Use implicit differentiation to find an equation of the tangent line to the curve $x^{2}-y^{2}=2 x y-x$ at the point $(1,1)$
14. As a balloon in the shape of a sphere is being blown up, the volume increases at a rate of 4 cubic inches per second. At what rate is the radius increasing when the radius is 1 inch?
15. Find an equation of tangent line to the curves $f(x)=x^{2}-x$ at $a=-1$
16. Find an equation of the tangent line to the curve $f(x)=\sin x$ at $a=\frac{3 \pi}{4}$. Use exact values, not decimal approximations.
17. A model rocket is fired straight up from the ground, and its height in meters t seconds after it is fired is described by the curve $h(t)=-4.9 t^{2}+90 t$.
a. What is the average velocity from the start until it reaches its highest point?
b. What is the instantaneous velocity 3 seconds after it is fired?
18. A ladder 16 feet long is resting against a vertical wall. If the angle between the top of the ladder and the wall is changing at a constant rate of $1 / 2$ radian per minute, how fast is bottom of the ladder sliding away from the wall when the angle is $\pi / 6$ radians?
19. A ladder 13 feet long rests against a vertical wall. If the bottom of the ladder slides away from the wall at the rate of $0.5 \mathrm{ft} / \mathrm{sec}$, how fast is the top of the ladder sliding down the wall when the bottom of the ladder is 5 feet from the wall? At what rate is the angle between the ladder and the ground changing?
20. A car is heading east toward an intersection at the rate of 40 mph . A truck is heading south, away from the same intersection at the rate of 60 mph . At what rate is the distance between the car and the truck changing when the car is 8 miles from the intersection and the truck is 15 from the intersection?
21. A cylindrical tank of water has a height of 6 feet and its radius is one third of its height. Water is flowing into the tank at the rate of $10 \mathrm{ft}^{3} / \mathrm{min}$. How fast is the height of the water level in the tank rising?
22. If $f(x)=\log _{2}(3 x)$, then; $f^{\prime}(x)$ equals
a) $\frac{1}{3 x}$
b) $\quad \ln (3 x)$
c) $\frac{1}{x \ln 2}$
d) $e^{3 x}$
e) $\quad 2 e^{3 x}$
23. Find $y^{\prime \prime}$, if $y=x^{6}-\frac{x^{5}}{5}+x^{2}-2$
a) $\quad y^{\prime \prime}=6 x^{5}-x^{4}+2 x$
b) $\quad y^{\prime \prime}=30 x^{5}-4 x^{3}+2$
c) $y^{\prime \prime}=120 x^{3}-12 x^{3}$
d) $y^{\prime \prime}=30 x^{4}-4 x^{3}$
e) None of these
24. Find the slope of the tangent to the curve $x^{2} y+3 x^{2} y^{3}+4=0$ at the point $(1,-1)$
a) 0.4
b) $\quad 0.8$
c) $\quad 1.0$
d) $\quad 1.6$
e) 2.0
25. Write an expression for the tangent line to $f(x)=x^{3}$ at $x=2$.
a) $y-8=12(x-2)$
b) $\quad y-8=8(x-2)$
c) $y-2=12(x-8)$
d) $y-8=\frac{-1}{12}(x-2)$
e) None of these

ANSWERS:

1. a) $\frac{-1}{x^{2}}$
b) $\quad \frac{-1}{(x-1)^{2}}$
c) $\frac{1}{2 \sqrt{x}}$
2.

a) $\frac{6 x^{2}+2}{\left(1-3 x^{2}\right)^{2}}$
b) $\frac{7 x^{3}+3 x^{2}}{\sqrt{2 x+1}}$
c) $\quad \frac{-3}{2 \sqrt{x}} \cot ^{2} \sqrt{x} \csc ^{2} \sqrt{x}$
d) $\frac{-3 e^{3 x}}{\sqrt{1-e^{2 x}}}$,e) $\left.\left.\frac{y}{1+(x+y)^{2}}, f\right) 2 \theta \sec ^{2} \theta \tan ^{2} \theta, g\right) 2 \sin (2 x)$
h) $\left.6 x^{2}-7, i\right) \frac{-20}{x^{3}}-\frac{11^{2}}{x^{9}}+150 x^{5}$
j) $y=\left(3 x^{2}+7 x\right)\left(12 x^{-4}+2 x^{5}\right)$
k) $\left.\frac{2 e^{x^{2}}}{\sqrt{1-4 x^{2}}}+\sin ^{-1}(2 x) 2 x e^{x^{2}}, l\right) \frac{\left(x^{2}+1\right)\left(\frac{3}{3 x-2}\right)-(2 x)(\ln (3 x-2)}{\left(x^{2}+1\right)^{2}}$
$\left.\left.m) 2 \sec ^{2}(2 x), n\right) e^{3 x-2}(3 x+1), o\right) \frac{1}{2 \sqrt{x(1+x)}}$
p) $\left.7^{x^{2}-1} 2 x \ln (7), q\right) \frac{2 \sqrt{x}}{\sqrt{x+2}}$
a) $\left.\left.\left.2 x \cos \left(x^{2}-1\right), b\right) \frac{2}{x \ln x^{2}}, c\right) \frac{1}{2 x \ln x}, d\right) 2 x+\frac{2}{x^{2}}$
e) $\left.\left.\left.\frac{2 x e^{x}-e^{x}+1}{2 x^{3 / 2}}, f\right)-2, g\right) x \cos x+\sin x, h\right)-\csc y$
4. $y=(1 / 2) x$
5. $y^{\prime \prime}=0$
6. 42
7. $y=\frac{1}{4} x+\frac{5}{4}$
8. $1 / 3,1$
9. $\quad 7.66,7.75$
$10.4 \mathrm{~m} / \mathrm{sec}$
11. A: First Derivative, B: Function
12. $y=\frac{1}{4} x+\frac{3}{4}$
13. $\frac{1}{\pi}$ inch $/ \mathrm{sec}$
14. $y=-3 x-1$
15. $-\frac{\sqrt{2}}{2} x+\frac{\sqrt{2}}{8}(3 \pi+1)$
16. a) 45
b) $\quad 60.6$
17. $4 \sqrt{3}$
18. $-5 / 24$
19. 71.76
20. $\frac{5}{6 \pi}$
21. C
22. e
23. b

24 a

