5.2 Practice Problems

1. Find the remainder if $f(x)=x^{3}+3 \mathrm{x}^{2}-x-3$ is divided by
a) $x+2$
b) $x-1$
2. Use the factor theorem to determine whether the function $f(x)=x^{3}+6 \mathrm{x}^{2}+8 \mathrm{x}-6$ has the factor
a) $x+2$
b) $x-1$
3. Find the bounds to the zeros of each polynomial function.
a) $f(x)=x^{3}-5 \mathrm{x}^{2}-11 \mathrm{x}+11$
b) $f(x)=3 \mathrm{x}^{3}-2 \mathrm{x}^{2}+x+4$
4. Use the intermediate value theorem to show that polynomial function has a zero in the given interval.

$$
f(x)=x^{4}+8 \mathrm{x}^{3}-x^{2}+2 ; \quad[-1,0]
$$

5. Find the real zeros of the polynomial function $f(x)=x^{3}+3 x^{2}-2 x-6$
a) the function f has at most \qquad zeros.
b) List the potential zeros using the rational zero theorem.
c) Use a graphing utility to narrow your list of potential zeros.
d) Use the factor theorem to determine if the potential rational zero is a zero.
e) If you find a zero, use synthetic division or long division to factor the polynomial.
f) Repeat until all of the zeros have been identified and the polynomial function is completely factored.
