5.1 Practice Problem

1.
$$f(x)=x^3+4x^2-4x-16$$

a. Determine the end behavior of the following polynomial functions by stating the degree and the leading coefficient. Choose one of the four possible end behaviors.

14Wam 8 4 4 4 m 4 1 4						
Degree	Leading Coefficient	End Behavior	Max Turning Points			

b. Complete the following statements.

$$f(x) \rightarrow \underline{\hspace{1cm}} as x \rightarrow \infty$$

$$f(x) \rightarrow \underline{\hspace{1cm}} as x \rightarrow -\infty$$

c. Find the real zeros for each of the above functions, state the multiplicity of each zero, and how you would graph the function near the zero.

Factor			
Real Zeros			
Multiplicity			
Cross/Touch			

d. Find the y-intercept.

e. Sketch the graph. Use your graphing utility to find local maximum and local minimum. Label the graph with intercepts and turning points. Identify intervals of increasing and decreasing.

2.
$$g(x) = -3x(x+3)(x-2)^2$$

a. Determine the end behavior of the following polynomial functions by stating the degree and the leading coefficient. Choose one of the four possible end behaviors.

Degree Leading Coefficien		End Behavior	Max Turning Points

b. Complete the following statements.

$$f(x) \rightarrow \underline{\qquad} as x \rightarrow \infty$$

$$f(x) \rightarrow \underline{\hspace{1cm}} as x \rightarrow -\infty$$

c. Find the real zeros for each of the above functions, state the multiplicity of each zero, and how you would graph the function near the zero.

would graph the function hear the zero.					
Factor					
Real Zeros					
Multiplicity					
Cross/Touch					

- d. Find the y-intercept.
- e. Sketch the graph. Use your graphing utility to find local maximum and local minimum. Label the graph with intercepts and turning points. Identify intervals of increasing and decreasing.

3.
$$h(x) = -2x(x^2 + 4)(x-2)^2$$

a. Determine the end behavior of the following polynomial functions by stating the degree and the leading coefficient. Choose one of the four possible end behaviors.

Degree	Leading Coefficient	End Behavior	Max Turning Points	

b. Complete the following statements.

$$f(x) \rightarrow \underline{\qquad} as x \rightarrow \infty$$

$$f(x) \rightarrow \underline{\hspace{1cm}} as x \rightarrow -\infty$$

c. Find the real zeros for each of the above functions, state the multiplicity of each zero, and how you would graph the function near the zero.

would graph the function hear the zero.					
Factor					
Real Zeros					
Multiplicity					
Cross/Touch					

d. Find the y-intercept.

e. Sketch the graph. Use your graphing utility to find local maximum and local minimum. Label the graph with intercepts and turning points. Identify intervals of increasing and decreasing.

4.
$$p(x)=6x^2-x-15$$

a. Determine the end behavior of the following polynomial functions by stating the degree and the leading coefficient. Choose one of the four possible end behaviors.

Degree	Leading Coefficient	End Behavior	Max Turning Points	

b. Complete the following statements.

$$f(x) \rightarrow \underline{\qquad} as x \rightarrow \infty$$

$$f(x) \rightarrow \underline{\hspace{1cm}} as x \rightarrow -\infty$$

c. Find the real zeros for each of the above functions, state the multiplicity of each zero, and how you would graph the function near the zero.

would graph the function hear the zero.					
Factor					
Real Zeros					
Multiplicity					
Cross/Touch					

- d. Find the y-intercept.
- e. Sketch the graph. Use your graphing utility to find local maximum and local minimum. Label the graph with intercepts and turning points. Identify intervals of increasing and decreasing.

- 5. Identify which of the following equations represents a polynomial function. For those that are polynomial functions state the degree and for those that are not polynomial functions state why not.

- $f(x)=3x^5-3x^4+2x^3-x+9$ b. $g(x)=\sqrt{x-9}$ c. $h(x)=\frac{1}{2}x^2-\frac{\sqrt{3}}{2}x+\frac{7}{8}$

- $F(x) = \frac{3x-9}{9-x^2}$ e. $G(x) = 3x^{-1} 2x^2 + 2$ f. $H(x) = -2x(x-9)^2(x+5)$
- $h(t) = x^{3/2} 2x 1$
- A В D D E F G Η

For the above graphs:

- a. Identify which of the following graphs could represent a polynomial function. If the graph does not represent a polynomial function, state why.
- b. For those that could be polynomial functions, how many turning points does the graph have?
- c. For those that could be polynomial functions, state the least degree the polynomial function could have.