5.1 Practice Problem

1. $f(x)=x^3+4x^2-4x-16$

a. Determine the end behavior of the following polynomial functions by stating the degree and the

leading coefficient. Choose one of the four possible end behaviors.

Degree	Leading Coefficient	End Behavior		Max Turning Points	
3		7	power function	2	

b. Complete the following statements.

$$f(x) \rightarrow \infty \text{ as } x \rightarrow \infty$$

$$f(x) \rightarrow \underline{-\infty} \text{ as } x \rightarrow -\infty$$

c. Find the real zeros for each of the above functions, state the multiplicity of each zero, and how you

would graph the function near the zero.

Would graph the tanetion near the zero.					
Factor	X+4	X+2	X-2		
Real Zeros	-4	-2	2		701000
Multiplicity	1	1	1		
Cross/Touch	Cross	cross	cross	12.	

$$0 = \chi^{3} + 4\chi^{2} - 4\chi - 16 \qquad x+4=0 \quad x+2=0 \quad x-2=0$$

$$0 = \chi^{2}(x+4) - 4(x+4) \qquad x=-2 \quad x=2$$

$$0 = x^2(x+4) - 4(x+4)$$

$$x = -4$$
 $x = -2$ $x = 2$

$$0 = (x+4)(x^2-4)$$

$$0 = (x+4)(x+2)(x-2)$$

d. Find the y-intercept.
$$f(0) = 0^3 + 4(0)^2 - 4(0) - 16 = -16$$

e. Sketch the graph. Use your graphing utility to find local maximum and local minimum. Label the graph with intercepts and turning points. Identify intervals of increasing and decreasing.

2. $g(x) = -3x(x+3)(x-2)^2$

a. Determine the end behavior of the following polynomial functions by stating the degree and the leading coefficient. Choose one of the four possible end behaviors.

Degree	Leading Coefficient	End Behavior	Max Turning Points
4	-3	Power function	3

b. Complete the following statements.

$$f(x) \rightarrow -\infty \text{ as } x \rightarrow \infty$$

$$f(x) \rightarrow \underline{-\infty} \text{ as } x \rightarrow -\infty$$

c. Find the real zeros for each of the above functions, state the multiplicity of each zero, and how you would graph the function near the zero.

Factor	X	X+3	X-2		1 1928 10028
Real Zeros	0	-3	2		, 9
Multiplicity	1	1	2	2	
Cross/Touch	Cross	CY055	touch	1	7 - 1 - 1 - 1 - 2 .

d. Find the y-intercept.

$$g(0) = -3(0)(0+3)(0-2)^2$$

= 0

$$(0, \delta)$$

e. Sketch the graph. Use your graphing utility to find local maximum and local minimum. Label the graph with intercepts and turning points. Identify intervals of increasing and decreasing.

INC:
$$(-\infty, -2)\cup(.75, 2)$$

DEC: $(-2, .75)\cup(2, \infty)$

3. $h(x) = -2x(x^2 + 4)(x-2)^2$

a. Determine the end behavior of the following polynomial functions by stating the degree and the leading coefficient. Choose one of the four possible end behaviors.

Degree	Leading Coefficient	End Behavior	Max Turning Points
5	-2	power func y=-2x ⁵	tion 4

b. Complete the following statements.

$$f(x) \rightarrow \underline{-\infty} \text{ as } x \rightarrow \infty$$

$$f(x) \rightarrow \underline{\hspace{1cm}} as x \rightarrow -\infty$$

c. Find the real zeros for each of the above functions, state the multiplicity of each zero, and how you would graph the function near the zero.

Factor	×	X-2	× +2 i	X-2i	, a
Real Zeros	\bigcirc	2	none	none	
Multiplicity	1	2			3-1- · · ·
Cross/Touch	Cross	touch	1 1	-	*

d. Find the y-intercept.

$$h(0) = -2(0)(0^{2}+4)(0-2)^{2}$$

$$= 0$$

e. Sketch the graph. Use your graphing utility to find local maximum and local minimum. Label the graph with intercepts and turning points. Identify intervals of increasing and decreasing.

INC: (.78,2) $DEC: (-\infty,.78) \cup (2,\infty)$

$p(x) = 6x^2 - x - 15$

a. Determine the end behavior of the following polynomial functions by stating the degree and the

leading coefficient. Choose one of the four possible end behaviors.

Degree	Leading Coefficient	End Behavior	Max Turning Points
7	6	~ 7	

$$f(x) \rightarrow \infty \text{ as } x \rightarrow \infty$$

$$f(x) \rightarrow \emptyset \text{ as } x \rightarrow -\infty$$

c. Find the real zeros for each of the above functions, state the multiplicity of each zero, and how you

would graph the function near the zero

would graph the	function near the	ZCIO.			
Factor	2×+3	3x-5	<i>y</i>	8	x£:
Real Zeros	4)60	5/3	3		s in the second of
Multiplicity	1	l			2 T 1 T
Cross/Touch	Cross	Cr055			

$$P(x) = (6x^2 - x - 15)$$

$$=(2x+3)(3x-5)$$

$$\frac{-3}{2x} = \frac{-3}{a}$$

$$3x-5=0$$
 $+5+5$

$$\frac{3 \times = 5}{3}$$

d. Find the y-intercept.

$$P(0) = |o(0)^2 - (0)| - |5| = -15$$

e. Sketch the graph. Use your graphing utility to find local maximum and local minimum. Label the graph with intercepts and turning points. Identify intervals of increasing and decreasing.

INC: (.08, 10)

DEC: (-0,08)

- 5. Identify which of the following equations represents a polynomial function. For those that are polynomial functions state the degree and for those that are not polynomial functions state why not.

- $f(x)=3x^{5}-3x^{4}+2x^{3}-x+9 \quad \text{b.} \quad g(x)=\sqrt{x-9} \quad \text{c.} \quad h(x)=\frac{1}{2}x^{2}-\frac{\sqrt{3}}{2}x+\frac{7}{8}$ Poly degree 5 $F(x)=\frac{3x-9}{9-x^{2}} \quad \text{e.} \quad G(x)=3x^{-1}-2x^{2}+2 \quad \text{f.} \quad H(x)=-2x(x-9)^{2}(x+5)$ $not \text{ poly beause var} \quad \text{not poly} \quad \text{poly degree } = 4$ $h(t)=x^{3/2}-2x-1 \quad \text{denomin} \quad \text{because} \quad \text{of ney}$ not poly frac power

For the above graphs:

A Smooth & continuous

- a. Identify which of the following graphs could represent a polynomial function. If the graph does not represent a polynomial function, state why.
- b. For those that could be polynomial functions, how many turning points does the graph have?
- c. For those that could be polynomial functions, state the least degree the polynomial function could have.