3.6 Practice Problems

1. Let $P=(x, y)$ be a point on the graph of $y=x^{2}-10$
a. Express the distance from P to the origin as a function of x.
b. What is d if $x=0$?
c. What is d if $x=3$?
d. Use a graphing utility to graph $d=d(x)$
e. For what values of x is d the smallest?
2. A rectangle has one corner in quadrant I on the graph of $y=25-x^{2}$, another at the origin, a third on the positive y -axis, and a fourth on the positive x -axis.
a. Express the area of the rectangle as a function of x.
b. What is the domain of A ?
c. Graph $A=A(x)$. For what value of x is A largest?

3. A wire of length x is bent into the shape of a square.
a. Express the perimeter p of the square as a function of x.
b. Express the area A of the circle as a function of x
4. Two cars are approaching an intersection. One is 3 miles west of the intersection and is moving at a constant speed of 35 miles per hour. At the same time, the other car is 4 miles north of the intersection and is moving at a constant speed of 40 miles per hour.
a. Build a model that expresses the distance d between the cars as a function of time.
b. Use a graphing utility to graph $d=d(t)$. for what value of t is d the smallest.
5. An island is 3 miles from the nearest point P on a straight shoreline. A town is 9 miles down the shore from P.
a. If a person can row a boat at an average speed of 2 miles per hour and the same person can
walk 4 miles per hour, build a model that expresses the time T that it takes to go from the island to the town as a function of the distance x from P to where the person lands the boat.
b. What is the domain of T ?
c. How long will it take to travel from the island to town if the person lands the boat 2 miles from P ?
d. How long will it take if the person lands the boat 6 miles from P ?
6. An open box with a square base is to be made from a piece of cardboard 32 inches on a side by cutting out a square from each corner and turning up the sides.
a. Express the volume V of a box as a function of the length x of the side of the square cut from each corner.
b. What is the volume if a 2 -inch square is cut out?
c. What is the volume if a 8 -inch square is cut out?
d. Graph $V=V(x)$. For what value of x is V the largest?
