A trinomial is a polynomial with three terms.
In this handout we will discuss a method for factoring trinomials of the form $a x^{2}+b x+c$.
Step 1: Multiply $a \cdot c$
Step 2: Find two numbers that when multiplied equal $a \cdot c$ and that when added equal b. Suppose the numbers are p and q . Two things need to be true.

1) $p \cdot q=a \cdot c$ AND
2) $p+q=b$

Step 3: Rewrite the expression using the numbers you found in the following way.

$$
\begin{array}{cc}
\boldsymbol{a} x^{2}+\boldsymbol{b} \boldsymbol{x}+c & \text { original expresssion } \\
a x^{2}+\boldsymbol{p} \boldsymbol{x}+\boldsymbol{q} \boldsymbol{x}+c & \text { re-written expression }
\end{array}
$$

Step 4: You now have 4 terms and are able to factor by grouping.
To factor by grouping do the following.
*group the first two terms together and group the last two terms together.
*factor the greatest common factor out of each pair
*when you have done this the expressions inside the parenthesis will match and you now have two terms with a common factor. Factor out greatest common factor.

Example: Factor $6 x^{2}-11 x-10$ using grouping.
Step 1: Multiply $\quad a \cdot c=6 \cdot(-10)=-60$
Step 2: Find two numbers that multiply to be -60 and add to be -11 . Start this by looking at all factors of -60. Since we are looking for two numbers that multiply to be a negative, one of the numbers must be negative and one must be positive. After finding the factors of -60 then write the sum of the factors.
factors of -60
$(-1) \cdot(60)$
$(1) \cdot(-60)$
$(-2) \cdot(30)$
$(2) \cdot(-30)$
$(-3) \cdot(20)$
$(3) \cdot(-20)$
$(-4) \cdot(15)$
$(4) \cdot(-15)$
$(-5) \cdot(12)$
$(5) \cdot(-12)$
$(-6) \cdot(10)$
$(6) \cdot(-10)$

$$
\begin{gathered}
\text { sum of the factors of }-60 \\
(-1)+(60)=59 \\
(1)+(-60)=-59 \\
(-2)+(30)=28 \\
(2)+(-30)=-28 \\
(-3)+(20)=17 \\
(3)+(-20)=-17 \\
(-4)+(15)=11 \\
(4)+(-15)=-11 \\
(-5)+(12)=7 \\
(5)+(-12)=-7 \\
(-6)+(10)=4 \\
(6)+(-10)=-4
\end{gathered}
$$

The pair that multiplies to be -60 and adds to be -11 is 4 and -15 .

Step 3: Rewrite the expression using the pairs you found in step 2.

$$
\begin{gathered}
6 x^{2}-11 x-10 \\
=6 x^{2}+4 x-15 x-10
\end{gathered}
$$

Step 4: Factor by grouping.

$$
=6 x^{2}+4 x-15 x-10
$$

$=\left(6 x^{2}+4 x\right)+(-15 x-10)$ group the 1st 2 terms together and group the 2 nd 2 terms together
$=2 x(3 x+2)-5(3 x+2)$ factor the GCF out of each grouping
$=(3 x+2)(2 x-5)$ factor the GCF out of each of the two terms that remain

Practice Problems: Factor the following trinomials and check your answer by multiplying

1. $x^{2}-2 x-15$
2. $4 \mathrm{x}^{2}-7 \mathrm{x}+3$
3. $18 x^{2}+17 x+4$
4. $2 x^{2}-3 x-27$
5. $21 x^{2}-8 \mathrm{x}-4$
6. $10 x^{2}+17 \mathrm{x}+3$
